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INTRODUCTION

The mechanical behavior of the musculoskeletal system and

the associated mathematical models have become an important

area of biomedical research. In orthopaedics, developments

in artificial replacements and reconstructive surgery have

demanded greater knowledge of the mechanical functions of the

major joints. In other disciplines such as sports medicine,

crash protection, and Air Force related applications an

increasing interest in the motions and forces in the human

body is noted. This need for a better understanding of the

complicated mechanical behavior of biological structures has

led to the introduction of research methods and mathematical

tools from the fields of life sciences as well as applied and

theoretical mechanics.

In attempting to understand the biodynamic response of

the human body subjected to expected and/or unexpected

external load conditions, properly developed mathematical

models can provide a sound basis for the design of support-

restraint systems and vehicles as well. The most sophisticat-

ed versions of these mathematical models are the articulated

and multisegmented total-human-body models which initially

appeared in the crash victim simulation literature. These

models simulate all the major articulating joints and segments

of the human body. Representative references are McHenry

[1963], Bartz and Butler [1972], Huston, Hessel and Passerelo

[1974], Fleck, Butler and Vogel [1975] and Fleck [1975].

Currently, the Aerospace Medical Research Laboratory

(AMRL) is in possession of an Articulated Total Body (ATB)

model which is maintained and used in Air Force related appli-

cations, in particular, to study the pilot ejection problem.

The ATB model has some special features'which allow the

capability of prescribing a) time-dependent forces on the body

segments to simulate aerodynamic forces, b) joint torques

which are functions of both flexure and azimuth angles, and

-11-



c) a generalized restraint belt subroutine which describes

and simulates a typical Air Force harness system.

The effectiveness of these multisegmented models to

accurately predict in-vivo response depends upon the bio-

mechanical description and simulation of the articulating

joints. This study, therefore, concerns with the analysis of

the mechanical behavior of the major articulating joints and

the development of mathematical models simulating their

dynamic behavior. In general mathematical models are based on

physical principles and consist of a set of mathematical rela-

tions among relevant parameters of the system. Assumptions

and simplifications are introduced, ignoring elements assumed

not to be relevant to the system's behavior. The relevant

parameters of the system are defined and the relations are

specified. This descriptive model is then expressed as a set

of mathematical relations among the chosen parameters. The

values assigned to the system'ts parameters are selected from

the literature or determined by measurement. In some cases,
the parameters cannot be measured and their values must be

estimated.

Validation of a model is established when the model

predictions correlate acceptably with data in the literature

and, if available, with results of experiments. Within the

framework of the present study, no validation experiments were

conducted, so that model predictions could be compared only

with experiments reported in the literature. Considering the

conditions of the reported experiments are only partly known

and owing to the variability between specimens, such a

comparison should be viewed as an approximate one.

In this report, a rather extended discussion of the

articulations and anatomical descriptions of the elbow,

shoulder, hip, knee and ankle joints will be first presented,
with special emphasis on the location and functional aspects

of the major ligaments of each joint. This is followed by a

-12-



description of the articulating surfaces and the development

of a measurement technique for the determination of articulat-

ing surface equations for the elbow, hip, knee and ankle

joints. Next, a constitutive equation representing ligament

characteristics and behavior is presented and the attachment

sites of the ligaments of the elbow, hip, knee and ankle joints

are provided.

General two- and three-dimensional mathematical dynamic

models of an articulating joint are then developed to deter-

mine the nature of motions and forces between two body

segments. The governing equations for these models are set

of highly nonlinear equations and their numerical solutions

are discussed in some detail. This is followed by a specific

application to a two-dimensional dynamic model of the human

knee joint. The numerical results from this model are

presented to illustrate the effects of duration and shape of

the dynamically applied loads on the response of the joint.

Special attention has been given to the ligament and contact

forces, the location of contact points, anterior-posterior

displacements and the comparison between the internal and the

external energy of the system. The results are compared with

experimental data from the literature and the validation of

the model is established. The report is concluded with a

discussion of extensions of the model and its possible impli-

cations on future research.

ARTICULATION AND ANATOMICAL DESCRIPTION OF
ELBOW, SHOULDER, HIP, KNEE AND ANKLE JOINTS

Realistic, accurate mathematical modelling of the major

articulating joints of the human body requires a comprehensive

knowledge and understanding of the physical behavior and the

anatomical characteristics of each joint. In a previous

report [Engin, 1979a] a survey was provided for various major

human joint models including a single degree of freedom hinge

-13-



or revolute joint, a spherical joint limited to two degrees of

freedom, three degrees of freedom planer joint, three degrees

of freedom ball and socket joint, and a general six degrees of

freedom. Passive and active force and moment response of

major human joints, associated torques about the long-bone

axes of these joints and some aspects of joint modeling were

reported in the literature by the senior author in a series of

articles [Engin, 1979b; Engin et al. 1979c; Engin, 1979d;

Engin and Kaleps, 1980a; Engin, 1980b; Engin and Peindl, 1980c;

Engin, Akkas and Kaleps, 1980d; Engin, 1981a&b; Engin and

Moeinzadeh, 1981c]. The research works presented in these

articles were performed with some obvious limitations on live

subjects by means of specially designed experimental apparatus.

In the following paragraphs, descriptions of the essential

anatomical and functional aspects of the elbow, shoulder, hip,

knee and ankle joints will be presented. For each joint, the

physical structure and the movements of the articulating seg-

ments are described and the ligaments having a significant

contribution to the integrity and function of each joint are

defined. A number of illustrative figures are presented for

each joint with segments appropriately identified by the

commonly accepted medical terminology. The anatomical and

functional descriptions provided below were taken from various

sources such as Gray [1973], Grant [1962], and Wells [1971].

ELBOW JOINT

The elbow joint is a uni-axial (hinge) joint. It is

composed of, proximally, the trochlea and capitulum of the

humerus, and distally, the trochlear notch of the ulna and the

head of the radius. The trochlea of the humerus is convex,

anteroposteriorly, and concave, side to side, fitting into the

trochlear notch of the ulna. The spherical capitulum of the

humerus fits into the concave head of the radius. The cavity

of the elbow joint is continuous with the superior radio-ulnar

joint where the head of the radius fits into the radial notch

of the ulna.
-14-



Movements of the elbow consist of flexion and extension,

determined by the shape of the trochlear surfaces: the medial

portion of the trochlea projects, distally, further than the

lateral portion. Flexion is limited by the soft tissues of

the arm, whereas extension is limited by the olecranon of the

ulna contacting the base of the olecranon fossa (Figure 1).

The capsule of the elbow joint is thin and covered by
muscles, attaching anteriorly to the humerus slightly above

the coronoid process and to the annular ligament around the

head of the radius. Posteriorly, attachment is slightly above

the capitulum of the humerus, to the olecranon fossa, the

olecranon upper margins and to the capsule of the superior

radio-ulnar joint.

Humerus

Olecramold fessa

Articular cartilage

Articular capsule

Annular ligament

Olecrunon os

Articular caps l

Trochlear notch

Olecranon

Figure 1. Anterior-posterior section of the right elbow joint.
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The fibrous capsule is lined by a synovial membrane which

extends into the coronoid, olecranon and radial fossae and

between the ulna and radius, being continuous with the syno-

vial membrane of the superior radio-ulnar joint. Pads of fat
are present between the fibrous capsule and the synovial

membrane. These fat pads fill the fossae: the olecranon fossa

during flexion, and the coronoid and radial fossa during

extension.

The capsule is strengthened by three ligaments:

1. ulnar collateral ligament (medial ligament);

2. radial collateral ligament (lateral ligament); and

3. annular ligament.

Ulnar Collateral Ligament

The ulnar collateral ligament is a roughly triangular
thick band, composed of a strong anterior band and a weaker
middle and transverse sheet (Figure 2). It extends from the

medial epicondyle of the humerus to an attachment along the

coronoid process and the olecranon of the ulna. The anterior

portion is nearly a cord, being taut in extension. The poste-

rior portion attaches to the distal and posterior of the
medial epicondyle and to the medial margin of the olecranon.
This portion of the ligament is a weaker sheet which is taut

in flexion. An oblique band extends between the olecranon

and the coronoid process, deepening the socket for the

trochlea of the humerus.

Radial Collateral Ligament

This ligament is attached to the lateral epicondyle of
4 the humerus, to the trochlear notch of the ulna and to the

annular ligament. It does not attach directly to the radius

so that rotation of the radius is permitted in pronation and
supination of the forearm (Figure 3).
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Figure 2. Medial aspect of the right elbow joint.

Humerus

Lateral supracondylar ridge

Radial collateral ligament

Annular ligament Radial

Lateral "

epicondyle

Olecranon Radius Ulna

Figure 3. Lateral aspect of the right elbow joint.
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Annular Ligament

This strong band encircles the head and neck of the

radius, attaching to the anterior and posterior margins of

the radial notch of the ulna. The radial collateral ligament

blends into the proximal margin of the annular ligament

(Figure 3). With the oblique cord, which extends medially and

upwards from the radial tuberosity to the coronoid process of

the ulna (Figure 3), the annular ligament maintains the radius

head close to the radial notch of the ulna.

SHOULDER COMPLEX

The shoulder complex is composed of four independent

articulations among the bones of the complex: the clavicle,

scapula, humerus and the thorax (Figure 4). The shoulder

girdle is composed of the clavicle and scapula. There are two

clavicular articulations: the sternoclavicular joint, where

the clavicle articulates with the manubrium of the sternum, and

the acromioclavicular joint, where the clavicle articulates

with the acromion process of the scapula. The glenohumeral

joint is a ball and socket joint composed of the humerus and

the glenoid cavity of the scapula. The final articulation is

not, per se, a joint but is the scapulothoracic articulation

of the scapula over the thorax.

Sternoclavicular Joint

This is a saddle-type joint with both concave and convex

curvatures. The proximal end of the clavicle is separated

from the manubrium of the sternum by a constant thickness,

intra-articular meniscus. The fibrous joint capsule is

4 strengthened by the anterior and posterior sternoclavicular

ligaments. Further, both left and right clavicles are joined

by the interclavicular ligament running over the sternal

notch (Figure 4). The inferior portion of the clavicle con-

nects to the first costal cartilage at the costal tuberosity

by means of the costoclavicular ligament. The sternoclavicular
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Figure 4. Anterior view of the right shoulder complex.
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Figure 5. Posterior aspect of the right shoulder complex.

-19-



joint possesses three degrees of freedom with axes in the

sagittal and frontal planes and the bone-axes of the clavicle.

Elevation of the clavicle is limited by the lower portion of

the joint capsule and the costoclavicular ligament. Depression

is limited by the upper portion of the joint capsule and the

interclavicular ligament.

Acromioclavicular Joint

This articulation between the distal end of the clavicle

and the acromion of the scapula is surrounded by a fibrous
capsule. The articulation provides little stability so that

the ligamentous structures are the primary stabilizers.

Reinforcing the capsule are the superior and inferior acromio-

clavicular ligaments (Figure 4). Additionally, the clavicle

connects to the scapula by the conoid and trapezoid portions

of the coracoclavicular ligament and by the coracoacromial

ligament (Figure 5). The proximity of the coracoid process

of the scapula to the clavicle (and the possible cartilagenous

formation between them), sometimes is referred to as the

coracoclavicular joint with the entire region being called the

claviscapular joint.

Glenohumeral Joint

This ball and socket joint between the head of the

humerus and the glenoid fossa of the scapula is surrounded by

a loose sleeve composed of the joint capsule and its capsular

ligaments. The contact surface is remarkably small with the

head of the humerus possessing a much greater articulating

surface than the glenoid fossa of the scapula. In addition to

the gelnohumeral capsular ligaments, the coracohumeral liga-

ment over the superior aspect of the joint provides reinforce-

ment as the humerus is suspended along side of the torso as

well as checks outward rotation of the humerus (Figure 6).
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Figure 6. Superior aspect of the right shoulder complex.

HIP JOINT

The hip joint is a multi-axial, ball and socket joint,

and therefore possesses three degrees of freedom. For conve-

nience, movements can be considered to be about three mutually

perpendicular axes: transverse, anteroposterior and

longitudinal. Flexion and extension occur about the trans-

verse axis; flexion being forward movement and extension being

backward. Flexion is limited by tension on the hamstrings and

soft tissues; extension is limited by the iliofemoral and

pubofemoral ligaments. Abduction, movement of the thigh away

from the midline of the body, and adduction, movement toward

the midline, occurs about the anteroposterior axis. Abduction

is limited by tension of the adductor muscles and by contact

of the greater trochanter with the acetabulum (Figure 7).
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Adduction is limited by the opposing leg and by the iliofemoral

and ischiofemoral ligaments. Lateral and medial rotation,

movement of the anterior surface of the thigh laterally and

medially, respectively, occurs about the longitudinal axis.

Lateral rotation is limited by the iliofemoral and pubofemoral

ligaments (Figure 8); medial rotation, by the ischiofemoral

and iliofemoral ligaments (Figure 10).

Analysis of these movements must take into account the

length and angulation of the neck of the femur in relation to

the long axis of the femoral shaft. In flexion or extension,

the femoral head rotates about a transverse axis within the

acetabulum. Medial and lateral rotations occur about a longi-

tudinal axis through the head of the femur and the lateral

condyle, when the foot is weight-bearing. Thus, the medial

condyle moves posteriorly and the greater trochanter moves

anteriorly in relation to this axis during medial rotation

However, when the foot is free or not weight-bearing, rota-ion

may occur about variable axes through the fc.,-ral hL:,>l.

Abduction and adduction are produced aboui :,:i anteroposterior

axis through the approximate center of the femoral head.

Because of shifting axes, it is sometimes convenient to

view movements as occurring about mechanical axes through the

femoral neck and the approximate center of the femoral head.

Thus, extension and flexion can be viewed as spins, producing

respectively, tauting (spiralizing) and relaxing (straightening)

of the ligaments and the capsule.

The joint itself is composed of the head of the femur and

the acetabulum of the hip. The femoral head is approximately

two-thirds of a sphere. The acetabulum is shaped like a

horseshoe, closed by a non-articulating pad of fat. The

socket is deepened by the acetabular labrum, a fibrocartilag-

inous rim, and the transverse ligament, which completes the

encapsulation of the head of the femur. The femoral head

aligns obliquely upwards, medially and slightly forwards.
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The capsule attaches slightly beyond the acetabular

labrum, blending with the labrum and the transverse ligament

anteriorly and inferiorly. Femoral attachments are along the

intertrochanteric line, anteriorly, and to the neck, medially

to the obturator externus. Three ligaments strengthen the

capsule:

1. iliofemoral ligament;

2. pubofemoral ligament; and

3. ischiofemoral ligament.

Iliofemoral Ligament

Triangular in shape and of great strength, the iliofemoral

ligament covers the anterior portion of the joint. It attaches

to the ilium above the acetabular rim and to the lower portion

of the anterior inferior iliac spine (Figure 9). The ligament

broadens and diverges, inferiorly, to form two bands. The

superior or lateral band attaches to the upper part of the

intertrochanteric line and is sometimes referred to as the

iliotrochanteric ligament. The inferior or medial band

attaches to the lower portion of the intertrochanteric line.

The iliofemoral ligament is referred to as the "Y" ligament

due to its inverted "Y"-shape. This ligament checks extension

of the joint, as well as both lateral and medial rotation.

Pubofemoral Ligament

The pubofemoral ligament attaches medially to the

anterior acetabular rim and the superior pubic ramus, and

crosses to the inferior of the neck of the femur, attaching to

the top of the lesser trochanter (Figure 8). Somewhat trian-

gular in shape, this ligament checks abduction, extension and

medial rotation.

Ischiofemoral Ligament

This ligament is less differentiated than the preceding.

It attaches to the ischium posteriorly and inferiorly to the

acetabulum, passing over the superior and posterior of the
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(neck of the femur (Figure 10). The superior portion is

generally horizontal and the posterior or lower portion

spirals. The ischiofemoral ligament limits medial rotation

and adduction.

Teres Femoris (Head of Femur) Ligament

Structurally, this ligament is of little importance.

Passing from the deep aspect of the transverse ligament to a

depression in the head of the femur; it functions primarily

as a conduit for blood vessels (Figure 7). In extreme

abduction, this ligament becomes taut, but not before the

iliofemoral ligament has become taut and possibly not until

the iliofemoral ligament fails.

KNEE JOINT

A condyloid, synovial joint, the knee is the articulation
of the distal condylar surfaces of the femur, the proximal

condylar surfaces of the tibia and the posterior surface of

the patella. While the primary movement is hinge-like, some

rotation does occur. Flexion, backward movement of the thigh

or leg, and extension, the opposite movement, occur about a

moving transverse axis. This axis moves backward during

flexion due to the curvatures of the femoral condyles.

At complete flexion, the posterior femoral condylar

surfaces articulate with the posterior tibial condylar sur-

*faces and with the posterior portions of the menisci. During

extension with the tibia fixed, the femoral condyles roll

forward while simultaneously sliding backward on the tibial

condylar surfaces. The contact areas between these surfaces

increases as the curvature of the femoral condyles decreases.

Movement on the lateral condyle ends before extension is

complete, while movement on the medial condyle continues since

the lateral articular surface of the lateral condyle is short-

er than the medial. This continued movement of the medial
condyle causes the femur to rotate medially about a

-26-
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longitudinal axis through the lateral condyle, causing the

collateral and popliteus oblique ligaments to become taut.

Thus, lateral rotation becomes a precursor to flexion.

During extension, there is a lateral rotation of the

tibia with respect to the femur. Conversely, medial rotation

of the tibia occurs in the beginning of flexion. When

approaching complete extension, the anterior portions of the

menisci are pushed forward by the femur and become less

curved. The opposite occurs in flexion. As the tibial col-

lateral ligament becomes taut during extension, it pulls the

medial meniscus outward. The lateral meniscus is drawn out-

ward, away from the femoral and tibial condyles, by the

popliteus which is attached to the posterior of the lateral

meniscus.

The cruciate ligaments are taut in most positions of the

knee and prevent anteroposterior displacement of the tiuia in

relation to the femur. During rotational movements, the

cruciates twist and untwist around each other. In full

flexion, the anterior cruciate ligament is relaxed and in full

extension the posterior cruciate is relaxed. The collateral

ligaments are relaxed when the knee is flexed to a ninety-

degree angle, thus allowing rotation about a vertical axis.

The articular surfaces of the femoral condyles are convex

anteroposteriorly and from side-to-side, being more marked in

the posterior portion of the anteroposterior curvature. The

tibial surfaces are comparatively flat, being deepened by the

wedge-shaped menisci. The patellar surface of the femur is

also convex from :;ide-to-side, with the lateral condyle

extending further forward and upward.

The medial and lateral menisci are two crescent-shaped

fibrocartilaginous structures attached to the upper surface

of the tibia by the coronary ligaments. The inferior surface

is flattened while the superior surface is concave, thus

deepening the sockets for the femoral condyles. The outside
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edges are firmly attached to the tibia through the capsule to

the tibial condyles. The inner edges are thin and free. The

anterior ends are attached by the transverse ligament. The

posterior portion of the lateral meniscus (Figure 11) is con-

tinuous with the posterior cruciate ligament and attaches to

the popliteous tendon. The medial meniscus attaches to the

tibial collateral ligament (Figure 14). The lateral is broader

and its ends closer than the medial meniscus. The lateral is

more nearly circular while the medial meniscus is more

elliptical.

Four major ligaments lend stability to the knee joint.

1. tibial collateral (medial) ligament;

2. fibular collateral (lateral) ligament;

3. anterior cruciate ligament; and

4. posterior cruciate ligament.

Tibial Collateral (Medial) Ligament

This is a broad, flat band in the medial portion of the

capsule. It is attached proximately to the medial epicondyle

of the femur below the adductor tubercle, and it broadens to

an attachment at the medial condyle and upper body of the

tibia (Figure II). Its deep fibers attach to the medial

meniscus periphery.

Fibular Collateral (Lateral) Ligament

Unlike the tibial collateral ligament, the fibular

collateral ligament is distinctly separate from the fibrous

capsule (Figure 11). It is a strong, rounded cord, attached

to the lateral epicondyle above the groove for the popliteous

tendon and passes to the lateral side of the head of the

fibula. The popliteous tendon lies below it, separating it

from the lateral meniscus.

Anterior Cruciate Ligament

The anterior cruciate ligament attaches to the tibia

anterior to the intercondylar eminence, between the menisci,
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partly blending with the anterior end of the lateral meniscus

(Figure 12). It crosses upward, backward and laterally,

twisting on itself, fanning out to attach to the medial aspect

of the femoral lateral condyle. It is anterolateral to the

posterior cruciate ligament. It holds the femur from sliding

backward, prevents hyperextension of the knee and checks

medial rotation of the femur when the leg is weight-bearing.

Posterior Cruciate Ligament

The posterior cruciate ligament attaches to the posterior

intercondylar area of the tibia and the lateral meniscus,

crossing upward, forward and medially to attach to the lateral

portion of the femoral medial condyle (Figure 13). It is

stronger, shorter and less oblique in direction than the

Femu r
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cruciate .i ... ... .
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MPosterior meniscofemeral
Medial ament
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tendon (medial head)
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Figure 13. Posterior aspect of the right knee joint.
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anterior cruciate ligament. It holds the femur from sliding

forward. The two cruciates are slightly twisted around each

other except when the knee is fully extended. At this

position, the tibia is laterally rotated in relation to the

femur.

ANKLE JOINT

The ankle or talocrural joint is a uni-axial hinge joint

formed by the articulation of the talus with a three-sided

socket composed of the distal surface of the tibia and the

articular surfaces of the tibial and fibular malleoli with the

inferior transverse tibiofibular ligament, posteriorly. The

tibia and fibula are firmly united at the inferior tibio-

fibular joint.

The hinge-like movement of the ankle occur about an axis

through the body of the talus (Figure 14), which is slightly

oblique, passing forward, medial to lateral. Dorsiflexion

(extension) is raising the forepart of the foot while plantar

flexion (flexion) is the lowering of the foot. There is

maximal congruence of the joint surfaces and maximal

ligamentous tension in dorsiflexion.

The joint capsule is thin anteriorly and posteriorly with

lateral ligaments. There are deep fatty pads in the anterior

and posterior portions of the joint. The joint cavity extends

upward between the tibia fibula for a few millimeters. The

anterior portion of the capsule is attached to the tibia near

the articular surface and to the neck of the talus near its

head.

The integrity of the ankle is determined in part by the

bony structure and in part by two ligaments:

1. medial ligament and

2. lateral ligament.

Medial Ligament

The medial ligament (deltoid ligament) is a strong, thick

triangular band connecting the medial malleolus of the tibia
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to several tarsal bones (Figure 14). The deep portion IVasses

from the malleolus to the medial surface of the talus. It is

also known as the anterior tibiotalar ligament. The superfi-

cial portion consists of three parts: (1) the anterior or

tibionavicular portion passes to the tuberosity of the navic-

ular bone, blending with the medial margin of the plantar

calcaneonavicular ligament; (2) the middle or tibiocalcanean

portion crosses to the sustentaculum cali of the calcaneous;

and (3) the posterior or posterior tibiotalar portion attaches

to the medial tubercle of the talus.

Lateral Ligament

The lateral ligament consists of three parts. (1) The

anterior talofibular ligament attaches to the anterior margin
of the lateral malleolus of the fibula, and to the anterior
of the talus between its neck and articular surface (fibular
articulation) (Figure 15). (2) The calcaneofibular ligament
passes down and back from the tip of the lateral malleolus to

the lateral aspect of the calcaneous, posterior to the
peroneal tubercle. (3) The posterior talofibular ligament

passes from the malleolar fossa to the lateral tubercle of the

talus.

GEOMETRY OF THE ARTICULATING SURFACES

Articulating surfaces play a major role in the physical
motion of a joint. It is assumed that the deformations in

the articular surfaces do not affect relative motions and

forces in the joint. This assumption is based on the consid-
eration that the deformations of the cartilage layer caused by
the contact between the articulating bones is relatively

slight compared to the range of motions in the joint (Wismans

[1980]). Therefore, the articular surfaces are represented
by rigid surfaces and the contact areas between the articulat-

ing surfaces are reduced to contact points.
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No accurate quantitative data for the geometry of the

articulating surfaces of the human joints are available in

the literature. The knee joint is relatively the most studied

joint and some techniques have been developed for measurements

of its articular surfaces. Seedham, et al., [1972a] studied

the femoral and tibial condyles by making a plastic mold of

the condyles. These mouldings were cut in the sagittal

planes, resulting in a number of contours of the articular

surface. In the work of Wismans, et al., [1980], using dial

gages, three-dimensional coordinates of 50-200 points on each

condyle of the knee were determined and the surfaces were

approximated by mathematical functions representing the col-

*lected data points. Most other studies in this field are

restricted to the determination of a number of rough dimen-

sions from roetgen photographs (Erkman and Walker [1974],

See-dham, et al. [1972b]). Several other measuring techniques

are also given in a survey by Wismans and Struben [1977] and

in Devens [1979], where special attention is paid to optical

methods.

In this study, coordinates of a large number of points

on each of the articular surfaces of the elbow, hip, knee and

ankle joints are determined using a sonic digitizing

technique. This technique, its measuring apparatus and pro-

cedures will be presented below. A procedure for approximat-

* ing the articular surfaces by mathematical functions will then

be discussed and a brief description of the articulating

surfaces, the location and orientation of coordinate systems

and the mathematical functions representing the elbow, hip,

* knee and ankle joint surfaces will be presented.

MEASURING TECHNIQUE

Coordinates of a large number of points on the

articulating surfaces are determined using a Graf/Pen Sonic

* Digitizer. Sonic digitizing is the process of converting

information on location or position in one, two or three
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dimensions, to digital values suitable for data processing,

storage or transmission. The system used to accomplish this

conversion consists of a stylus, two or three microphone/

sensor assemblies (for two- and three-dimensional data

conversion, respectively), an electronic control unit and a

generator/multiplexer unit which is used to select and power

sonic impulse emitters. As an example of the digitizer's

operation, let us first consider the two-dimensional mode of

operation.

The two-dimensional sensor assembly consists of two

perpendicular, linear microphones as shown in Figure 16.

These sensors define a planar effective working area of ap-

proximately 35 cm x 35 cm. The Graf/Pen uses impulses gener-

ated at the tip of the emitter to calculate its position in

X SENSOR

+- SOUND IMPULSES
0

SONIC EMITTER
(Stylus)

Figure 16. The two-dimensional microphone/sensor assembly of
the Graf/Pen sonic digitizer.
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( the working area. The times required for the sound waves to

reach the two microphone/sensors are converted into distance

measurements (the x and y coordinates). The measurements are

then transmitted to the computer in binary coded decimal

(BCD) Cartesian form. The two-dimensional mode is primarily

used to dilgitize joint surface curves which are obtained from

x-ray projections (see Figure 32) or physical cross-sections

of the joint. Additionally, the two-dimensional microphone!

sensor assembly provides a menu capability of alphanumeric

data entry to the computer.

An obvious advantage of using sound as a ranging device

is that digitization need not be confined to a plane. The

4 three-dimensional microphone/sensor unit utilized for the

digitization of the articulating surfaces consists of four

linear microphones arranged in a planar, rectangular manner.

These microphones define a three-dimensional effective work-

ing volume of approximately 150 cm x 75 cm x 180 cm, along

the x, y and z directions, respectively. The three-dimensional

mode of operation is similar to that of the two-dimensional

mode. In the three-dimensional set-up, however, the dis-

tances measured are slant ranges to each of the coplanar

sensors. Thus, the information generated by each sensor

represents the radius of a circular arc which includes the

impulse source -(the tip of the sonic emitter) and is in a

4 plane perpendicular to the sensor. Four sensors are used
m~erely for the purposes of accuracy. The digitizer examines

the signals from all four sensors, selects the three smallest

signals and disregards the fourth. The location of the sonic

4 emitter is then calculated as being at the intersection of

the three smallest arcs. The three slant ranges are easily

converted into Cartesian x, y and z coordinates by a micro-

processor in the control unit and converted for transmission.

Using the joints of a full-size human skeleton, each

articulating joint segment was placed on the apparatus shown
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L in Figure 17, with its articular surface facing the

microphone/sensor unit. Digitizing each surface, the coordi-

nates of a large number of points (50-200) on the surfaces

were measured with respect to the microphone/sensor unit's

coordinate system. The output was recorded on an LA120

terminal, manufactured by Digital Equipment Corporation.

Applying simple mathematics, these coordinates were then

transformed into the local coordinate system of the particular

joint segment under study.

Generator/Multiplexer Unit

Electronic Control Unit

Microphone/Sensor

Joint Segment LA120 Terminal

Figure 17. Experimental set-up for measuring the three-
dimensional geometry of the articulating surfaces.
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MATHEMATICAL DESCRIPTION OF THE ARTICULATING SURFACES

Based on the above procedure, coordinates(xQ, YQ, ZQ) of

a suffici, it number of points on each of the articulating

surfaces are determined in their respective, local coordinate

systems. The aim is to find a realistic and simple represen-

tation in the form of a mathematical approximation for the

geometry of these surfaces. In this study, a polynomial of

degree n (n>l) is used and expressed as:

n n-p
y = f(x,z) = pz q  ()

p=0 q=O pq

The coefficients a of equation (1) have to be determined in

such a way that for each point Q, the coordinate yQ is

approximated as accurately as possible by y(xQ,ZQ). In the

present work, the coefficients apq are obtained by means of

statistical operations using the 79.3A version of the GLM

procedure of the Statistical Analysis System (SAS) subroutines

(SAS [19791). The GLM procedure uses the principle of least

squares (Goodnight and Harvey [1978], Draper and Smith [1966],

Graybill [1961]) to fit linear models and provides an output

data set containing (a) predicted and residual values from the

analysis, (b) standard deviation and (c) percentage accuracy

of the fit. Summarized values for the degree of the

polynomial, n, the standard deviation, a, and the percentage

accuracy, R, of the models obtained for the articulating sur-

faces of the elbow, hip, knee and ankle joints are presented

in Table 1.

ARTICULATING SURFACES OF THE ELBOW JOINT

Anatomical Description

The two main articulating surfaces of the elbow joint

are the trochlea and the trochlear notch. The trochlea

(Figure 18a) is a grooved surface much like the circumference

of a pully, which covers the anterior, inferior and posterior
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Table 1

DEGREE OF POLYNOMIAL (n), STANDARD DEVIATION (a)
AND PERCENTAGE ACCURACY (%R) OF THE FIT FOR

THE ARTICULATING SURFACES OF ELBOW, HIP,
KNEE ANY ANKLE JOINTS.

JOINT ARTICULATING n (cm) %R
SURFACE

Trochlea 4 0.09 94.4
ELBOW

Trochlear notch 4 0.07 94.5

Head of femur 4 0.08 98.2
HIP

Acetabulum 4 0.15 99.1

Tibia lateral 4 0.03 93.8

Tibia medial 4 0.05 94.6
KNEE

Femur lateral 4 0.04 99.3

Femur medial 4 0.07 98.7

Talus (trochlear) 4 0.03 98.5
ANKLE

Medial malleolus 4 0.04 95.7

surfaces of the condyle of the humerus. It is separated from

the capitulum on its lateral side by a faint groove, but its

medial margin is salient and projects downward beyond the

rest of the bone. The trochlea articulates with the trochlear

notch of the ulna.

The trochlear notch (Figure 18b) is formed by the anterior

surface of the olecranon and the superior surface of the

coronoid process. The base is constricted at the junction

between these two areas and they may be separated completely

by a narrow, roughened strip. A smooth ridge which corresponds

to the groove of the trochlea, divides the notch into a lar.ger,
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Figure 18. Anterior and medial aspects of the humerus

and ulna.
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medial portion and a smaller, lateral part. The medial part

conforms to the large flange of the trochlea of the humerus.

Coordinate System

The origin of the (x,y,z) coordinate system is placed at
the approximate geometric center of the humerus, with the
x-axis directed along the posterior-anterior direction and

the y-axis coinciding with the humerus longitudinal axis
(Figure 18a). The origin of the coordinate system (x',y',z')
coincides approximately with the geometric center of trochlear

notch, with the x'-axis directed along the anterior-posterior
direction and the y'-axis being directed along the longitudi-
nal axis of the ulna (Figure 18b). The locations of the

origins of these coordinate systems are 15.5 cm and -0.8 cm
from the intersection points of the y and x' axes with the

articular surfaces, respectively.

The articulating surfaces are digitized in their
respective coordinate systems following the technique described

above. The coefficients a of equation (1) are summarized in
pq

Table 2. Note that to avoid multi-value function difficulties,
the surface equation for the trochlear notch is presented as:

n n-p
= f(y',z') = I a pqyPz 'q  (2)

p=0 q=O

Proper consideration of this variable change must be made in
future analysis and modeling of the elbow joint.

ARTICULATING SURFACES OF THE HIP JOINT

Anatomical Description

The two articulating surfaces of the hip joint are the
head of the femur and the acetabulum of the pelvis. The head

of the femur is rather more than half of a sphere (Figure 19a).
It is directed upward, medially and slightly forward to
articulate with the acetabulum. Its surface is smooth with a

small fovea or roughened pit slightly below and behind its

center.
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Table 2

COEFFICIENTS OF THE EQUATIONS OF THE
ELBOW JOINT ARTICULATING SURFACES.

COEFFICIENTS ARTICULATING SURFACE

pq
(cm) Trochlea Trochlear Notch

a0 0  15.5619 -0.8296

a0 1  0.5426 0.1613

a0 2  0.9899 0.0410

a0 3  -0.3204 -0.2188

a04  -0.3807 0.1936

a1 0  0.5668 0.4230

a11 -0.3387 -0.2996

a12  0.1875 -0.1772

a13  0.2360 0.3742

a20  -0.4083 -0.5579

a21  -0.0320 -0.0439

a2 2  -0.2297 -0.7558

a30  -0.0243 -0.2487

a31  0.1307 -0.0776

a40  -0.0891 0.1855

4 *unitless
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Figure 19. Anterior and front aspects of the femur
and pelvis.

-43-



The acetabulum is an approximately hemispherical cavity

on the lateral asnect of the inominate bone, about its center,

and is directed laterally, downward and forward. It is

surrounded by an irregular projecting margin which is defined

inferiorly; this gap is the acetabular notch. The floor of

the cavity is roughened and non-articular. The sides of the

cup present an articular lunate surface which is widest

superiorly. In this situation, the weight of the trunk is

transmitted to the femur in the erect attitude. This horse-

shoe shaped strip is covered with articular cartilage (Gray

[19731) and provides the surface on which the head of the

femur rides within the hip joint.

Coordinate System

The origin of the (x,y,z) coordinate system is placed at

the geometric center of the acetabulum floor (acetabular

fossa), with the x-axis directed along the posterior-anterior

direction and the y-axis directed along the superior-inferior

direction (Figure 19b). The origin of the (x',y',z')

coordinate system coincides with the approximate center of

mass of the femur, with the x'-axis directed along the

posterior-anterior direction and the y'-axis being directed

along the longitudinal axis of the femur (Figure 19a). The

location of the origins of these coordinate systems, as shown

in Figure 19, are -1.5 cm and 19.5 cm from the intersection

points of the y and y' axes with the articular surfaces,

respectively.

The articulating surfaces of the hip joint are digitized

in their respective coordinate systems as described previously

and the results for the coefficients apq of equation (1) are

summarized in Table 3.

ARTICULATING SURFACES OF THE KNEE JOINT

Anatomical Description

The tibial and femoral condyles are the major articulating

surfaces of the knee joint (Figure 20). The upper end of the
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Table 3

COEFFICIENTS OF THE EQUATIONS OF THE
HIP JOINT ARTICULATING SURFACES.

COEFFICIENTS ARTICULATING SURFACE

pq
(cm) Head of Femur Acetabulum

a0 0  -19.5628 -1.5131

a0 1  -3.9686 -1.2324

a0 2  1.7498 -0.0416

a0 3  -0.3864 0.5052

a0 4  0.0352 0.1025

a1 0  0.2045 4.5526

a11  0.2260 10.5723

a1 2  -0.1281 4.9788

a1 3  0.0174 0.6813

a2 0  0.9641 -0.0956

a2 1  -0.4715 -0.4650

a2 2  0.0800 0.0034

a30  -0.0382 1.5829

a3 1  0.0146 0.5512

a4 0  0.0235 -0.1303

*unitless
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Figure 20. Posterior aspect of the femur and anterior

view of the tibia.
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tibia is expanded, especially in its transverse axis, providing

an adequate bearing surface for the body weight transmitted

through the lower end of the femur. It comprises of two prom-

inent masses, the medial and lateral condyles, and a smaller

projection, the tuberosity of the tibia. The condyles project

backwards a little, so as to overhang the upper part of the

posterior surface of the shaft. Superiorly, each is covered

with an articular surface, the two being separated by an

irregularly roughened intercondylar area. They form visible

and palpable landmarks at the side of the ligamentum patella,

the lateral condyle being the more prominent.

The medial condyle (Figure 20b) is the larger but does

not overhang so much as the lateral condyle. Its upper

articular surface, oval in outline, is concave in all

diameters, and its lateral border projects upwards, deepening

the concavity and covering an elevation, the medial intercon-

dylar tubercle. The posterior surface of the condyle is

marked, immediately below the articular margin, by a

horizontal, roughened groove. Its medial and anterior

surfaces form a rough strip, separated from the medial sur-

face of the shaft by an inconspicuous ridge.

The lateral condyle (Figure 20b) overhangs the shaft,

especially at its posterolateral part, which bears on its

inferior surface a small circular facet for articulation with

the upper end of the fibula. The upper surface is covered

with an articular surface for the lateral condyle of the

femur. Nearly circular in outline, it is slightly hollowed

in its central part, and its medial border extends upwards to

cover an elevation, termed the lateral intercondylar tubercle.

The posterior, lateral and anterior surfaces of the condyle

are rough.

The lower end of the femur is widely expanded and thus

provides a good bearing surface for the transmission of the

weight of the body to the top of the tibia. It consists of

-47-



4

two prominent masses of bone, the condyles (Figure 20a),

which are partially covered by a large articular surface.

Anteriorly, the two condyles are united and are continuous

with the front of the shaft; posteriorly, they are separated

by a deep gap, the intercondylar fossa (intercondylar notch),

and they project backwards considerably beyond the plane of

the popliteal surface.

The lateral condyle is flattened on its lateral surface

and is not so prominent as the medial condyle, but it is

stouter and stronger, for it is placed more directly in line

with the shaft and probably takes a greater share in the

transmission of the weight to the tibia. The most prominent

4 point on its lateral aspect is termed the lateral epicondyle

(Figure 20a), and the whole of this surface can be felt

through the skin.

The medial condyle possesses a bulging, convex medial

aspect, which can be palpated without difficulty. Its upper-

most part is marked by a small projection, termed adductor

tubercle because it gives insertion to the tendon of the

adductor magnus. The most prominent point on the medial sur-

face of the condyle is below and a little in front of the

adductor tubercle and is termed the medial epicondyle (Figure

20a). The lateral surface of the condyle is the roughened

medial wall of the intercondylar fossa.

Coordinate Systems

The origin of the (x,y,z) coordinate system is placed at

the approximate geometric center of the femur with the x-axis

directed along the posterior-anterior direction and the y-axis

4- coinciding with the femural longitudinal axis (Figure 20a).

The origin of the coordinate system (x',y',z') coincides with

the approximate center of mass of the tibia, with the x'-axis

directed along the anterior-posterior direction and the

* y'-axis being directed along the longitudinal axis of the

tibia (Figure 20b). The location of the origins of these
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coordinate systems, shown in Figure 20, are 19.5 and -20.6 cm

from the intersection points of y and y' axes with the lateral

articular surfaces.

The articulating surfaces of the knee joint are digitized

in their respective coordinate systems according to the

technique described previously and the coefficients, apq, of

equation (1) for the tibial and femoral articulating surfaces

of the knee joint are summarized in Tables 4 and 5,

respectively.

ARTICULATING SURFACES OF THE ANKLE JOINT

Anatomical Description

The major articulating surfaces of the ankle joint are

the trochlear surface of the talus and the medial malleolus

(Figure 21).

The body of the talus is cuboidal in shape. Its dorsal

surface is covered by the trochlear articular surface, which

articulates with the lower end of the tibia at the ankle

joint. It is convex from back to front and gently concave

from side to side, and it is widest anteriorly (Figure 21a).

The medial surface of the talus is covered in its upper part

by a comma-shaped articular facet which is deeper in front

than behind and articulates with the medial malleolus.

The medial malleolus is a short but stout process. Its

lateral surface is smooth and occupied by a comma-shaped

articular facet, which articulates with the medial side of

the talus (Figure 21b). Its anterior surface is rough, and

its posterior surface bears the lower end of the groove that

marks the posterior surface of the lower end of the bone.

The lower border of the malleolus is pointed anteriorly and

depressed posteriorly.

Coordinate Systems

The origin of (x,y,z) coordinate system is placed at the

approximate geometric center of the tibia, with the x-axis
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Table 4

COEFFICIENTS OF THE EQUATIONS OF THE TIBIAL
ARTICULATING SURFACES OF THE KNEE JOINT.

COEFFICIENTS ARTICULATING SURFACE

pq
(cm) Tibia Lateral Tibia Medial

a00  -20.6964 -18.7135

a0 1  -1.6128 -1.6587

a0 2  -0.3786 1.9298

a0 3  0.0215 -0.7677

a0 4  0.0117 0.1001

al0 0.7539 -0.7837

a11 1.0017 0.9363

a1 2  0.3751 -0.4480

a1 3  0.0421 0.0677

a2 0  0.2212 -0.3921

a2 1  0.1889 0.1772

a2 2  0.0335 -0.0123

a3 0  0.0885 -0.2331

a3 1  0.0367 0.0670

a4 0  0.0373 -0.0369

*unlitless
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Table 5

COEFFICIENTS OF THE EQUATIONS OF THE FEMORAL
ARTICULATING SURFACES OF THE KNEE JOINT.

COEFFICIENTS ARTICULATING SURFACE

pq
(cm) Femur Lateral Femur Medial

ao0  19.5520 18.5270

a01  -1.9895 8.9256

a0 2  0.6298 -7.2093

a03 0.8031 2.4873

a0 4  -0.0055 -0.3193

a1 0  -1.4614 0.1211

11 -2.5323 -0.5608

a1 2  -1.3528 0.1310

a1 3  0.2354 -0.0500

a20 -0.1912 -0.5928

a2 1  0.0620 -0.0411

a2 2  -0.4573 -0.0557

a3 0  -0.1305 -0.2447

a3 1  0.2058 -0.0332

a4 0  -0.0544 -0.0376

*unitless
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directed along the posterior-anterior direction and the y-axis

coinciding with the longitudinal axis of tibia (Figure 21b).

The origin of the coordinate system (x',y',z') coincides with

the approximate center of mass of the talus, with the x'-axis

directed along the posterior-anterior direction and the y'-

axis being directed along the inferior-superior direction of

the talus (Figure 21a). The location of the origins of these

coordinate systems, shown in Figure 21, are 20.2 cm and 1.3 cm

from the intersection points of the y and y' axes with the

articular surfaces, respectively.

The articulating surfaces of the ankle joint are

digitized in their respective coordinate systems according to

the technique described previously and the coefficients, apq,

of equation (1) are summarized in Table 6.

MATHEMATICAL REPRESENTATION OF LIGAMENTS

Structural integrity of the articulating joints is

maintained by capsular ligaments and both extra- and intra-

articular ligaments. Capsular ligaments are formed by thick-

ening of the capsule walls where functional demands are

greatest. As the names imply, extra- and intra-articular

ligaments at the joints reside external to and internal to the

joint capsule, respectively. Extra-articular ligaments have

several shapes, e.g. cord-like or flat depending on their

locations and functions. These types of ligaments appear

abundantly at the articulating joints. However, only the

shoulder, hip and knee joints contain intra-articular

ligaments. For example, the cruciate ligaments at the knee

joint are probably the most well known intra-articular

ligaments. Further information about the structure and

mechanics of the joint can be found in Barnett, Davies, and

Mac Conaill [1949].

Ligament configurations are largely dependent on

arrangement of the joint and its articulation, the direction
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Table 6

COEFFICIENTS OF THE EQUATIONS OF THE ARTICULATING
SURFACES OF THE ANKLE JOINT.

COEFFICIENTS ARTICULATING SURFACE
apq

(cm) Talus (Trochlear) Medial Malleolus

a0 0  -1.4684 20.2305

a0 1  0.3722 -0.0445

a0 2  -0.1347 -0.1872

a0 3  -0.0227 0.0010

a0 4  0.0549 0.0601

a10  0.1428 -0.0689

a11  0.0018 0.1748

a1 2  -0.1114 -0.0195

a1 3  -0.0454 -0.0725

a20  0.3446 0.1118

a2 1  -0.0123 0.0319

a2 2  -0.0115 0.0757

a3 0  0.0516 0.0369

a3 1  0.0154 -0.0232

a4 0  -0.0072 0.0316

*unitless

5
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of tendons, and the location of the organs. Thus, in

different joints, according to their structure, ligaments may

be more or less lax, or tight, or capable of more or less

movement. Because of the difference in the direction of the

tendons or the placement of the membranes and their site and

magnitude, ligaments vary in their configurations, circumvolu-

tion and extension. On account of all these factors, some

ligaments are twisted like cords, some are united in fibrous

bonds and others flattened into membranous forms. This

variation in form is indicated in their corresponding names

according to size: major, minor, maximus; according to

external form: large, thick, thin; according to configuration:

long, wide, round, triangular, quadrate, circular; according

to their positions: straight, transverse, oblique, horizontal,

perpendicular, superficial, sublime, deep, lateral, right,

left, anterior, posterior, superior and inferior; according

to their insertion: interclavicular, brachioradial, etc.

(Gray [1973]).

In this section, general aspects and material

characteristics of soft tissues, in general, and ligaments in

particular, are studied. Ligaments are modeled as non-linear

elastic springs and their constitutive equation and stiffness

values are presented. Attachment sites of the elbow, hip,

knee and ankle joint ligaments are determined and summarized.

GENERAL CHARACTERISTICS

Ligaments, capsule and other connective tissues such as

tendons, skin and blood vessels, consist mainly of collagen

and elastin fibers embedded in a mucopolysaccharide intercel-

lular ground substance (Wismans [19801). Geometrical arrange-

ments and the relative amount of each of the components of

the fibers vary from tissue to tissue. Usually, in ligaments

and tendons, collagen fibers are oriented in the direction of

the transmitted force while the elastin fibers form a dis-

ordered network. Crisp [1972] reported that under no external

-55-



loading of the tissue, the collagen bundles are coiled. Due

to the difficulties involved in the dissection of the compo-

nents of biological structures, the mechanical properties of

the collagen and elastin fibers are usually determined for a

tissue in which one of the components is predominent.

Material properties of collagen are often determined by the

use of tendons. Elliot [1965] reported that in tendons of

the human body, about 75% of the dry weight is collagen and

just 2% is elastin.

Physical behavior and the stress in a biological tissue

not only depends on strain but also on strain history. This

behavior is evident in phenomena such as stress relaxation,

creep, hysteresis and dependence of the elastic moduli on the

strain rate and temperature. A number of mathematical

descripLions characterizing this behavior are proposed in the

literature. T1ese descriptions may be divided into two groups.

In the first group, the measured microscopic response of

the tissue is characterized by a continuous, nonlinear

equation, as in the quasi-linear visco-elastic law of Fung

[1972]. The most noticeable feature of the mechanical

behavior of biological tissues is that measurable stresses

develop only after the specimen has been stretched consider-

ably from its original or relaxed length. In such an

extension, the stress-strain law becomes highly nonlinear and

classical theory of elasticity, which is restricted to linear

stress-strain relations and small strains, is not applicable.

The nonlinear stress-strain relations developed in the

analysis of finite homogeneous deformations of elastomers

have been studied by Mooney [1940], Rivlin [1948] and on the
basis of strain energy function by Green and Adkins [1960].

Fung [1967] has shown that the elastic properties of mesentery

are completely different from those of vulcanized rubber. He

has concluded that the stress-strain relation in the one-

dimensional case should be exponential in the stretch mode.
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A generalization of Fung's result to three-dimensional

problems was given by Gou [1970], who introduced a strain

energy density which is an exponential function of the strain

invariant. Various potential functions describing the large

deformation of biological tissue and its response to various

forces are presented in the literature. These include the

works by Blatz, Chu and Wayland [1969], Lee, Frasher and Fung

[1967], Hildebrandt, Fukaya and Martin [1969], Veronda and

Westman [1970], Simon, et al., [1970], and Demiray [1972].

In general, however, these functions have been developed for

a specific loading pattern and assumed material isotropy. A

more general function permitting the study of a number of

types of loads and interaction between combined loads is given

by Snyder [1972].

In this first group, there are also represented models

in which the tissue response is described by a mechanical

analogy, consisting of a number of spring, dashpot and dry

frictional elements. For example, nonlinear visco-elastic

behavior of collagenous tissue has been simulated by Frisen,

et al., [1969], using a Kelvin model and a number of nonlinear

springs.

In the second group the mathematical description is based
on an idealization of the microstructures and on the mechani-

cal properties of the constituent materials. Based on the

knowledge that the connective tissues are composed of fibrous

and amorphous materials they may be treated as fiber-reinforced

materials. The initial part of the loading phase is a geomet-

rical rearrangement of the microstructural network due to

uncoiling of the coiled fibers of collagen. Linear constitu-

tive equations are assumed for the second part of the loading

in which the collagen fibers are elongated. The models by

Comninou and Yannas [1976], and Drouin [19801 on the one-

dimensional stress field studies of elastic behavior of
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collagenous tissues and'two material composite prosthesis,

respectively, fall in this group.

In this study simulation of joint ligaments is

accomplished by a mathematical description based on an

approximation of experimental data reported in the literature.

Ligaments will be represented by nonlinear elastic springs as

the experiments were limited to a one-dimensional stress

field and information is available only on the elastic

behavior. Due to the microstructure and the orientation of

the collagen fibers, representation of ligaments by springs

would seem to be a realistic approach. The general form of

the constitutive equation and the values of the parameters

characterizing the constitutive equations of the different

springs are discussed below.

CONSTITUTIVE EQUATION

A constitutive equation representing ligamentous behavior

is based on available data in the literature. Data concerned

with the knee joint ligaments is considered since the general

theoretical analysis developed later in this report will be

applied to the knee joint.

Brantigan and Voshell [1941] presented a review of the

conflicting theories on the function of knee ligaments prior

to 1940 and reported the results of study on approximately 100

knees. Since that time many investigators have discussed the

function of various ligamentous structures (Hallen and Lindhal

[1965] and [1966]; Hughston and Eilers [1973]; Kennedy and

Grainger [19671; Kennedy and Fowler [1971]; Kennedy, Weinberg

and Wilson [1974]; Robinson and Romero [19681; Slocum and

Larson [1968]; Warren, Marshall and Girgis [1974]; Girgis, et

al., [1975]; Trent and Walker, [1975]; Piziali, Rastegar and

Nagel [1977]; Piziali, et al., [1980]; and Seering, et al.,

[1980]), and the length of primary structures as a function

* of knee flexion (Edwards, Lafferty and Lange [1969]; Wang,
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Walker and Wolf [1973]; and Crowninshield, Pope and Johnson

[1976]. In qddition, pure torsional rotation with and without

contact pressure has been measured by Wang and Walker [1974].

Force-deflexion characteristics of several types of

ligaments under uniaxial tension has been reported by Trent,

Walker and Wolf [1976], Kennedy, et al., [1976], Noyes and

Grood [1976] and Dorlot, et al., [1980]. Usually four

characteristic regions of the force-deflexion curve of collag-

enous tissue are identified. The location of these regions

(Figure 22) can be explained in terms of microarchitecture

(Crisp [1972]; Wismans [1980]). The stiffness of the tissue,

defined by the slope of the load-deflexion curve, is rather

slight in region 1. This initial region is considered mainly

to correspond to the geometrical rearrangement of the micro-

structural network (uncoiling of the coiled collagen fibers).

Therefore, the stiffness is determined mainly by the stiffness

of the elastin network. The stiffness increases in region 2

as some of the fibers become aligned. All collagenous fibers

are assumed to be fully uncoiled at the end of this region.

As the force on the tissue steadily increases, the collagen

fibers themselves elongate. In region 3, the stiffness is

reported to correspond mainly to the stiffness of the collagen

fibers and is found to be almost constant. Finally in region

4, disruption of some collagen fibers is observed, followed

by a complete failure of the tissue itself.

Th2 force-elongation curve of Figure 22 can be

represented by a quadratic equation. Haut and Little [1972]

carried out a number of tension tests on rat-tail collagen

bundles and reported that at low strains, the elastic behavior

of this tissue could be described by a quadratic stress-strain

equation. Crowninshield, Pope and John'son [1976] tested human

medial collateral ligaments and indicated that a quadratic

stress-strain function is a good approximation for the elastic
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Figure 22. Force-elongation curve for collagenous tissues.

behavior of such tissue. In this study the following force-

elongation relationship is assumed for each ligament:

lFjl= kj(Lj - j)2 for L. > £. (3)

in which k. is the spring constant, Lj and j are, respectively

the current and initial lengths of the ligament, j. It is

assumed that the ligaments cannot carry any compressive force;

accordingly:
l jl = 0 for Lj < z. (4)

The direction of the force, Fj, exerted by a spring on the
articulating body segment coincides with the direction of the

line segment through the origin and insertion points of that

spring. The length, 1j, of spring j is equal to the distance

between its insertion and origin points.
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LIGAMENT STIFFNESS

Several studies concerned with the tension tests of human

knee joint ligaments have been reported in the literature.

Among these studies, the work of Noyes and Grood [19761,

Trent, Walker and Wolf [1976], and Kennedy, et al., [1976]

will be considered in this section.

Twenty-one anterior cruciate ligaments have been tested

by Noyes and Grood [1976]. The intact knee joints were kept

in a frozen condition for about four weeks. They were thawed

at room temperature a day before testing. The specimens were

then mounted in the testing machine at 450 of flexion and, at
an elongation rate of 25 mm/sec., they were tested to failure.

The stiffness, k, the strain cf, and the corresponding force,

Ff, were determined. The mean values of these quantities are

summarized in Table 7. Large deviations between the specimens

are evident and the younger ligaments are much stiffer than

older ones.

The cruciates and the collateral ligaments of six fresh
specimens together with a piece of their bony attachments were

tested by Trent, Walker and Wolf [1976]. The specimens were

loaded to failure in a normal saline solution at 37'C and at

an elongation rate of 0.8 mm/sec. Table 7 shows the mean-

values for the stiffness, k. The values for the anterior

cruciate is close to the mean values reported by Noyes and

Grood [1976] for the older specimens.

Kennedy, et al., [1976] tested twenty anterior, posterior
and collateral ligaments at two different strain rates of 2

and 8 mm/second. The specimens were tested some fourteen

hours after death and were kept in isotonic saline. The

ligaments were tested without their bony attachments. Each

ligament was fixed in an upper clamp initially and allowed to
hang freely, seeking its own orientation. A lower clamp was

then applied. Special care was made to avoid twisting the

ligaments. The mean values of the strain, ef, and
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corresponding force, Ff, are given in Table 7. No stiffness

data or age of specimens were reported in this study. The

variation in the results reported by Kennedy, et al., [1976]

and those of Noyes and Grood [1976] may be explained partly

by possible slipping of the specimens between the clamps and

differences in elongation rates.

In this study, the values of the stiffness, kj, for

different springs is based on the mean data reported by Trent,

Walker and Wolf [1976]. For the stiffness of the medial

collateral ligament a correction reported by Wisman [1980] is

used in order to account for the oblique and the deep medial

collateral ligament, since these parts were not included in

the specimens tested by Trent, Walker and Wolf [1976]. This

correction is based on data presented by crowninshield, Pope

and Johnson [1976]. Stiffness values used in this study for

the lateral collateral (LC), the medial collateral (MC), the

anterior cruciate (AC), and the posterior cruciate (PC)

ligaments are summarized in Table 8.

Table 8

LIGAMENT STIFFNESS FOR THE LATERAL
COLLATERAL (LC), MEDIAL COLLATERAL
(MC), ANTERIOR CRUCIATE (AC) AND
POSTERIOR CRUCIATE (PC) LIGAMENTS.

Ligament Km(N/mm 2)

LC 15

MC 15

AC 30

PC 35
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INSERTIONS AND ORIGINS

Accurate determination of attachment sites or the so-

called insertions and origins, of ligaments are of considerable

importance in the mathematical modeling of the articulating

joint. Very little quantitative information is available on

this subject. Attachment sites and the lengths of the knee

joint ligaments have been measured in vivo and in vitro and

reported by Crowninshield, Pupe, and Johnson [19761.

In this study, by close physical and anatomical study of

the elbow, hip, knee, and ankle joints (Grant [1962]; Gray

[1973]), the attachment sites of their respective ligaments

have been measured and summarized in Table 9. For each joint,

insertion points are measured with respect to its (x',y',z')

coordinate system and origins with respect to its (x,y,z)

coordinate system. Note that attachment sites of only those

ligaments which signkficantly contribute to the integrity and

functional aspects of the joints have been measured, and due

to the expanded shape of some of the ligaments, slight varia-

tion may be inherent in these measurements.

TWO-DIMENSIONAL DYNAMIC FORMULATION
OF A TWO-BODY SEGMENTED JOINT

The mathematical descriptions of the articular surfaces,

ligaments and capsule thus far presented can now be integrated

into a two-dimensional mathematical formulation of a general

two-body, segmented articulating joint.

For the purpose of studying the joint motion, one segment

is assumed to be fixed while the other segment is executing a

relative motion. The coordinate systems (x,y) and (x',y') are

attached to the fixed and the moving body segments,

respectively, and their relative position and angular oriernta-

tion will be discussed. Next the contact conditions between

the two articulating surfaces are presented, and the descrip-
tion of ligaments, contact and applied external forces and
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moments, along with the governing dynamic equations of motion

are presented. A numerical procedure employing the Newmark

method of differential approximn:tion and Newton-Raphson itera-

tion process is suggested for the solution of these coupled,

nonlinear algebraic and differential equations.

CHARACTERIZATION OF THE RELATIVE POSITIONS

A joint connects two segments of a body which are

designated as segments 1 and 2 and, for illustrative purposes,

will be represented as shown in Figure 23. The position of

moving body segment 1 relative to the fixed body segment 2 is

described by two independent coordinate systems shown in

Figure 23. An inertial coordinate system (x,y) with unit

Yx

~~~SEGMENT'I-. x

Figure 23. A two-body segmented joint is illustrated showing
the position of a point, Q, attached to the moving coordinate
system (x',y')
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vectors i and j is connected to the fixed body segment, while

the coordinate system (x',y') with unit vectors i' and j' is

attached to the center of mass of the moving body segment 1.

The motion of the moving (x',y') system relative to the

fixed (x,y) system may be characterized by three quantities:

the translational movement of the origin of the (x',y')

system in the x and y-directions, and its rotation, a, with

respect to the x and y-axis.

Let the position vector of the origin of the (x',y')

system, in terms of the fixed system, be given by:

ro = x0 i 
+ yoj (5)

Let the vector p' be the position vector of an arbitrary point,

Q, on the moving body segment in the base (i',j'). Let r be
Q

the position vector of the same point in the base (i,j).

That is,

PI = x~i' + y~j (6)

rQ = xQi + yQj (7)

Referring to Figure 23, for vectors p' and i, the following
relationship can be written:

[rQI = fro] + [T][p0] (8)

where [T] is a 2x2 orthogonal transformation matrix. The

angular orientation of the (x',y') system with respect to the

(x,y) system is specified by the four components of [T] matrix.

Assuming a to be the angle between the positive direction of

x-axis and the positive direction of x'-axis (Figure 23), then

the transformation matrix [T] is written as:

cos a -sin a
[T] = "(9)

sin a cos aI
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r-

Therefore, the position in the (x,y) system of any given

point in (x',y') system can be determined knowing [T] and r0

CONTACT CONDITIONS

Assuming rigid body contact between the two body segments

at point C as shown in Figure 24, let us represent the contact

surfaces by smooth mathematical functions of the following

form:

y = fl(x) (10)

y f2 (x') (11)

As implied, equations (10) and (11) represent the fixed and

moving surfaces, respectively.

SEGMENT 1 I I' _ -.' " a , _

Y4

Figure 24. A two-body segmented joint is illustrated showing
contact point, C, location and relevant vectors.
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The position vectors of the contact point, C, in the

base (i,j), is denoted by:

rc = Xci + fl(xc)j (12)

and the corresponding one in the base (i',j'), is given by

P C f 2 (x )j' (13)

Then at the contact point, C, the following relationship must

hold:

[rc] = [r o] + [T][pc] (14)

This is a part of the geometric compatibility condition for

the two contacting surfaces. In addition, the unit normals

to the surfaces of the moving and fixed body segments must be

colinear.

Let n1 and t1 be, respectively, the unit normal and unit

tangential vectors to the fixed surface, y = fl(x), at the

contact point, C, (Figure 25) and represented by:

nI = nlxi + n ly (15)

t = tlxi + t ly (16)

or for t

drct 1  a (17)

By definition, a unit normal vector directed toward the center

of curvature is given by:

A dt 1

n= R u (18)

where R is the radius of curvature and is defined as
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Figure 25. Unit normal, n1 , and tangential, t1, vectors at
the contact point, C.

R [1 + (df1/dx) 2 3/2 (9

I d'f1/dx 2 1

The distance, ds, along the surface, y =fl(x), is defined as:

ds (d) +(d)

or

ds r, 1 i~ dx (20)

Substituting equation (20) in equation (17) gives:
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= _______________dr (21

1 + (dfl/dx)2

Consequently, equation (18) can be written as:

Sn = (22)
1 + (dfl/dX)2

But from equation (21):

dil 1 d2 c (dfl/dx) (d2 fl/dx2) drc

1 + (dfl/dx)2  dx2  [1 + (dfl/dx)2]3 /2 dx

or:

dit 1 r c (dfl/dx)(d 2 fl/dx 2) drc 1
T- [1 + (df/dx)]1 /2 d2 x2 - [1 + (df1 /dx)2] a- (23)

Combining equations (22) and (23):

[1 + (dfl/dx) 2]/2 [ d2 r (dfl/dx)(d 2 f 1 /dx) dr- C1nl = c - (24)
1 [Id~f 1 /dx21 dx2  [1 + (dfl/dx) 2 (

But:

drc / dfl)

dxi - + T - (25)

and

d2 r / l)
C= j 

(26)
dx /

Substituting equations (25) and (26) into equation (24):

[1 + (df1/dx)2 1  d f1  df /dx ,~df 1
n l = -f d -d1 + Td

ld2f/dX2 1dx 2  [1 + (df1 /dx)
2 ]
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or:

-, (d2fl/dX2) [ cdfl/dx))12)-(flX)1

2[ 2
nl d [1 - dfl/dX 2 ] 1/2 df /d
1 Id 2fl1/dX 2 11 [1 (dfl/dX) (fl ]x

+ 
(dfl/dx) 2 1

[1 + (dfl/dx) 2]

Simplifying the above equation yields:

(d f,/dx)r d f 1/ df1n = 1d2f 1  [ + ( ) + j (27)idf/dx2 - x=xc

where x is the x-coordinate of the contact point, C, in the
base (i,j). From equations (15) and (27) it can be shown that

nlx 2  2 I(8
n ix2 + n ly (28)

which is an expected result since n and nly are respectively
the x and y components of unit vector n. Similarly, following
the same procedure as was outlined for nl, at the point of
contact, C, the unit normal vector, n', to the surface,

y' = f2(x'), directed toward its center of curvature, can be
written as:

d ( df 2 )/ Id 2f 21
n 2 =d f RI/I 1/2 [ Cx- (dfX) ji ']' c (29)-X-
where x is the x'-coordinate of the contact point, C, in the
base (i','). From the transformation matrix [T], given in
equation (9), the coordinate base (I',j') is related to

coordinate base (i,j) by:

i' coso i + sina j (30)
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sina 1 + Cosa j (31)

Substituting equations (30) and (31) into equation (29),

yields:

(d 2f2/dx'2) [ + (df2 )2--1/2 d Sf c
n2 id2f 2/dx'2i dx [- (---x I+ n

(32)

df 2
+ Cosa - sine -- )

dx

The colinearity of the normals at the point of contact, C,

requires that:

n x n2 = 0 at x=x , x'x' (33)

that is:

d2 2f 2
d fl Id d f2 d f 2  1/2d2 df x( d 2  Tdx 2 dfIdf i

dx dx2 1x

I + (df 1 + ( d 2x ] 1/

- (cosa df2 
+ sinsi + Cosa - sins ---) ] 0

dx' dx

or:

dfI1 df2  dfI  df2
sina d cosa df1 + Cosa -, + sins = 0 (35)

Tin dx dx

Finally, the contact condition takes the following form:

sins 1 + xc 2 x'=x'c

T X X X C x r 1 C ]( 
3 6 )

- CO~ d -)( ) = 0T x xc-73- dx 
x =



DYNAMIC EQUATIONS OF THE MOVING BODY SEGMENT

The total load acting on the moving body segment is

divided into forces exerted by nonlinear springs which are

simulating the ligament and capsule forces, contact forces

between the moving and fixed body segments and applied exter-

nal forces and moments (Figure 26). In the following sections,

each of these forces will be mathematically formulated and

final equations of motion for the moving body segment will be

presented.

Ligament Forces

Representation of ligaments and capsules as nonlinear

elastic springs along with their governing constitutive equa-

tions were discussed previously. The force, Fi. in nonlinear

spring, j. is a function of its length, z., that is:

yjk

74-
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F. = f(gj) (37)

Let (!) be the position vector in the base (i',j') of
j m

the insertion point of the ligament, j, in the moving body

segment. The position vector of the origin point of the same

ligament, j, in the fixed body segment is denoted by (r2j)f

in the base (i,j). Here the subscripts m and f outside the

parenthesis imply "moving" and "fixed", respectively. The

current length of the ligament is given by:

L. = [(ij) ro T(!) m (38)

~I -0 3 TjmI [( )f 0 jm

The unit vector, X., along the ligament, j, directed from the

moving to the fixed body segment is:

S - ro - T(P!) (39)
ij Lj [ r 2 jf m

Thus, the axial force in the ligament, j, in its vectorial

form, becomes:

F. = FjAj (40)

where F. is given by equation (3).

Contact Forces

Since the friction force between the moving and fixed

body segment is neglected, the contact force will be in the

direction of the normal to the surface at the point of

contact. The contact force, N, acting on the moving body

segment is given by:

N = y N n1  at x=x c (41)

where N is the magnitude of the contact force and
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(d2fl/dx
2)

at x=x c  (42)
Jd2 fl/dx

2  C

y is either +1 or -1 and it ensures the correct direction of

the contact force acting on the moving body segment.

Applied External Forces and Moments

In order to achieve the desired joint motion, an external

force, FeP and a moment, Me of known magnitude and direction

are applied to the center of mass of the moving body segment.

The force, P e and moment, Me' are applied in the base (i,j)

and their resultants are given as:

e = (Fe)x i+ (Fe)y j (43)

Me = Me k (44)

where Me is the magnitude of the applied moment vector, Me"

Equations of Motion

The dynamic equations of motion of the moving body

relative to the fixed body segment are as follows:

p
(Fe)x + yN(n)x + l F( )x = Mxo (45)

X j=l j i

p
(F) yN(nl)y + F(Xj)y = y 46)

P .

Me (TP') x (yN i 1) j (Tp!) x (F ) = Iza 47)

where p is the number of ligaments and the subscripts, x and

y, denote the components of the related quantities in the x

and y-directions. The mass of the moving body segment is

denoted by M and the dots denote derivatives with respect to

time, t. The mass moment of inertia of the moving body segment
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about the z-axis is Iz and a designates its angular

acceleration. The problem description is completed by assign-

ing the initial conditions, which are:

Xo Yo = 0 (48)

along with the specified values for x0 , Yo and a at t = 0.

Three nonlinear second order differential equations,

(45), (46) and (47), along with the geometric compatibility

and contact conditions of equations (14) and (36), provide

the necessary relationships in order to determine the

following unknowns:

a) x0 and yo: the components of vector ro;

b) xc and xc: the x and x'-coordinates of the

contact point, C, in the base (ij) and (i',j'),

respectively;

c) a: the orientation angle of the moving (x',y')

system relative to the fixed (x,y) system; and

d) N: the magnitude of the contact force.

The numerical procedure employed in the solution of the

governing equations is described in the following section.

NUMERICAL METHOD OF SOLUTION

Newmark Method of Differential Approximation

The first step in arriving at a numerical solution of

these equations is the replacement of the time derivatives

with a temporal operator; in the present work, the Newmark

operators (Bathe and Wilson [1976]) are chosen for this

purpose. For instance, x0 is expressed in the following form:

t 4 t t-At 4 "t-At t-at
•o -_) (xo-xo ---tx x (49)

t it-A + At xotA + At "t (50)0X0o 0o

in which At is the time increment and the superscripts refer

to the time stations. Similar expressions are used for Yoand
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a.In the application of equations (49) and (50), the

conditions at the previous time station (t-At) are, of course,

assumed to be known.

Numerical Procedure

After the time derivatives in equations (45) , (46) and

(47) are replaced with the temporal operators defined in the

previous section, the governing equations take the form of a

set of nonlinear algebraic equations. The solution of these

equations is accomplished by an iteration method. In this

work, the Newton-Raphson (Kao [1974]) iteration process is

used for the solution. To linearize the resulting set of

simultaneous algebraic equations, we assume:

-1t = kl t + Ax0  (51)
0 0 0

and similar expressions for the other variables are written.

Here, the right subscripts denote the time station under

consideration and the left subscripts denote the iteration

number. At each iteration, k, the values of the variables at

the previous (k-i) iteration are assumed to be known. The

delta quantities denote incremental values. Equation (51) and

the corresponding ones for the other variables are substituted

into the governing nonlinear algebraic equations and the

higher order terms in the delta quantities are dropped. The

set of n simultaneous algebraic (now linearized) equations can

be put into matrix form:

[K] (A = f}(52)

where [K] is an nxn coefficient matrix, {AIJ is a vector of

incremental quantities and {D) is a vector of known values.

The iteration process at a fixed time station continues

until the delta quantities of all the variables becomc

negligibly small. A solution is accepted and the iteration

process is terminated when the delta quantities become less

than or equal to a prescribed percentage of the previous
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values of the corresponding variables. The converged solutions

of each variable is then used as the initial value for the

next time step and the process is repeated for consecutive

time steps.

The only problem that the Newton-Raphson process may

present in the solution of dynamic problems is due to the fact

that the period of the forced motion of the system may turn

out to be quite short. In this case it becomes necessary to

use very small time steps; otherwise a significantly large

number of iterations is required for convergence. This matter

will be further discussed in later sections.

Any joint can be modeled with this general formulation.

The knee joint will be modeled accordingly and results will

be presented in the remaining sections of this report.

MATIIEMATICAL DESCRIPTION OF A
THRE E-DIMENSIONAL DYNAMIC MOiKL

In the previous section, a mathematical description for
the dynamic motion of a two-dimensional articulating joint

was presented. Using the knowledge and the insight from the

discussion along with the mathematical descriptions of the

articular surfaces, ligaments and capsule discussed in prior

sections, a general formulation fo- a three-dimensional mathe-

matical model of an articulating joint will be presented in

this section.

Once again for the purpose of studying the joint section,

one segment is assumed to be fixed while the other segment is

executing a relative motion. Coordinate systems (x,y,:) and

(x',y',z') are attached to the fixed and moving body segments,

respectively, and their relative position is discussed below.

This relative position is determined by six variables: three

components of a vector specifying the origin of the (x',y',z')
system, and three rotations which determine the orientation of

the (x',y',z') system. Contact conditions and dynamic equations

of motion are then presentel.
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CHARACTERIZATION OF RELATIVE POSITIONS

A joint connects two body members which are here

designated as segment 1 and segment 2. The position of the

moving body segment 1 relative to fixed body segment 2 is

described by two coordinate systems as shown in Figure 27.

Inertial coordinate system (x,y,z) with unit vectors i,j and

k is connected to the fixed body segment and coordinate system

(x',y',z') with unit vectors i',j' and k' is attached to the

center of mass of the moving body segment. The (x',y',z')

coordinate system is also taken to be the principal axis

system of the moving body segment.

The motion of the moving (x',y',z') system relative to

the fixed (x,y,z) system may be characterized by six

quantities: the translational movement of the origin of the

PY

SEGMENTI k g Wx lgx, Z,)

" C ' y=f(x,z)

Yrc!

SEGMENT 2

/k x

Figure 27. A two-body segmented joint is illustrated in
three dimensions, showing the position of a point, Q, attached
to the moving coordinate system (x',y' z').
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(x',y',z') system in the x, y and z-directions, and e, € and

rotations with respect to the x, y, and z-axes.

Let the position vector of the origin of the (x',y',z')

system in the fixed system be given by (Figure 27):

r o =x 0 i + yoj + zok (53)

Let the vector, p be the position vector of an arbitrary

point, Q, on the moving body segment in the base (i',j',k').

Letrq be the position vector of the same point in the base

(ij,k). That is,
iA

P x~i' + y j ' + zQ' (54)

Qr Q = xQi + yQj + ZQk (55)

Referring to Figure 27, vectors p' and r have the relation-
Q Q

ship:

{r:Q {r 0 } + [T{p }  (56)

where [T] is a 3x3 orthogonal transformation matrix. The

angular orientation of the (x',y',z') system with respect to

the (x,y,z) system is specified by the nine components of the

[T] matrix and can be written as a function of the three

variables, o, * and p:

T = T(0,0,) (57)

There are several systems of variables such as 0, 0 and

which can be used to specify T. In this study the Euler

angles will be utilized.

The orientation of the moving coordinate system

(i',j',k') is obtained from the fixed coordinate system

(ij,k) by applying successive rotation angles, *, 6 and

(Figure 28). First the (i,j,k) system is rotated through an

angle 0 about the z-axis (Figure 28a), which results in the

intermediary system (il,j'l,kl), where:
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Figure 28. Successive rotations of , and p, of the (x,y,z)
coordinate system.

11 = cos i + sin j (58a)

j , sin i + cos¢ j (58b)

k = k (58c)

The second rotation through an angle e about the i -axis

* (Figure 28b), produces the intermediary system (i2 ,j2 ,k2),

where:

12 = I  (59a)

j2 = cosO 3l + sinO kl (59b)

k2 = - sine j, + cosO kl (59c)
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The third rotation through an angle i about the k2 -axis

(Figure 28c), gives the final orientation of the moving

(i',j',k') system relative to the fixed (i,j,k) system, where:

i = i3 = cos 12 + sin 32 (60a)

P = j3 = - sin i2 + cosp J2  (60b)

k k 3 = k2  (60c)

Substituting equations (58) and (59) into equation (60), the

final orientation of the (i',j',k') system relative to the

(ij,k) system may be written as:

I' = [(cosp cos4 - sin cosO sin4)i + (cosp sin,

(61a)
+ sinp cosa cosf)j + (sinp sine)k]

= [(-sin cos4 - cosp cose sin4)i + (- sink sin

A (61b)
+ cosp cost cose)j + (cosp sine)k]

' [(sine sin4)i - (sine cos4)j + cosa k] (61c)

or, in matrix notation:

i [T] (62)

where:

coso cosp cosp sino sine sinp
-sinp cosa sin +sinp coso cos

[T] = sinp cos -sinp sino cos sine (63)-cosp cose sin, +cos cose cos(

sino sine -sine coso cose
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CONTACT CONDITIONS

Assuming rigid body contacts between the two body

segments at points Ci (i=1,2) as shown in Figure 27, let us

represent the contact -urfaces by smooth mathematical func-

tions of the form:

y = f(x,z) (64)

y g(x',z') (65)

As implied, equations (64) and (65) represent the fixed and

the moving surfaces, respectively.

The position vectors of the contact points C i (i=1,2) in!1
the base (i,j,k) is denoted by

rc =Xc + f(XciZc)j + Zk (66)

and the corresponding ones in the base (i',j',k') are given

by:

= X'c il' + g(x1 ' )j' + ' k? (67)Oci g ci. zi)i c "

Then, at each contact point Ci the following relationship must

hold:

{rci ={r + [T] {P' (68)

This is a part of the geometric compatibility condition for
the two contacting surfaces. Furthermore, the unit normals

to the surfaces of the moving and fixed body segments at the

points of contacts must be colinear.

Let ic (i=l,2) be the unit normals to the fixed surface,
y = f(x,z), at the contact points, Ci (i=1,2), then:

Ic
= 1 3c--x(-" ) i=1,2 (69);'DET[G] C. i

where rci is given in equation (66) and the components of the

matrix [G] are determined by:
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Gk = -l ai X1~ (70)k /
with

xJ xc , = z ,i x F(x ciZ c)

Therefore the components of matrix [G k~i may be written as:

E a 2 ayi )2 + a(zci2

GXax i) + ax +i (71a)

, ax \ax \ /a Ia

G ~ x )2 + ax yac~ 2) z+ )2 /1a

(71c)

+ azci (azc

ax c aZ

Since (azc./axc.) =0 and (axci/azci) =0, then the components

of matrix [Gkt reduce to:

2
Gxx = 1 + '. C (7 2a)

= 1 + (,f 2(72b)

Gxz =zx ax (a ) ( c i) ( c
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From equations (72), the DET[G] can be written as:

DET[G] = 1 + ( )2 + ( f ) 2, = + (73)
.. X i  c i

and therefore, the unit outward normals expressed in equation

(69) will have the following form:

n_ _ _ _ _ _ _ _ _ _ _ y_ - I (74)
c+ af 2 + f 2 ax c i a )kJ

ci 8zci

where the parameter, y, is chosen such that nc represents the

outward normal. 1

Similarly, following the same procedure as outlined aboveA

n'i (i=1,2), the unit outward normal to the moving surface,

y' =^g(x',z'), at contact points, Ci (i=1,2), and expressed in

(i',j',k') system, can be written as:

/ /)[ ax t + ( '1 (75)
i 12 2

where parameter, a, is chosen such that nc. represents the

outward normal. 1

Colinarity of unit normals at each contact point C.
1

(i=1,2), requires that:

* {n c. = -[T] T n c .  (76)

* Note that colinearity condition can also be satisfied by
requiring that the cross product (nci x TTnci) be zero.

DYNAMIC EQUATIONS OF THE MOVING BODY SEGMENT

The total load acting on the moving body segment is

divided into forces exerted by nonlinear springs which

simulate the ligaments and capsule forces, contact forces
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between the moving and the fixed body segments and applied

external forces and moments (Figure 29). Ligament and

capsule forces were discussed and formulated previously. The

coefficient of friction between the articulating surfaces,

owing to the presence of the synovial fluid in the joints, is

known to be very low (Radin and Paul [1972]). Accordingly,

the friction force between the two body segments will be

neglected. Therefore, the contact forces, Ni, acting on the

moving body segment are given by:

&. = fNil[(n c )i + (nc) j + (nc )k] (77),. x C i y  c

where INiI's are the unknown magnitudes of the contact forces

and (nci)x, (nci)y and (nci)z are the components of the unit

normal, nci, in the x, y and z-directions, respectively.

Fe Y

SEGMENT 1 ",y ,

, 
-.l

C

Y F2 SEGMENT 2

A-

z

Figure 29. Forces acting on the moving body segment of a two-
body segmented joint in three dimensions.
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The desired dynamic motion is acl ieved by applying an
external force and moment to the center of mass of the moving
body segment whose resultants are given as:

F e = (Fe)xi + (Fe)yJ + (Fe)zk (78)

Me = (Me)xi + (Me)yJ + (Me)zk (79)

Equations of motion will be presented next.

Equations of Motion

The equations governing the forced motion of the moving
body segment are:

q p
(F+ex + INij(nc )x + F(xj )x  Mx0  (80a)

i=l j=l

q p
(Fe)y + I JNij(nci ) + j Fj (x)y = My (80b)

e i c jll

q p(Fe~z + . INiI(nc + I F(X)) = Mz o  (80c)i= 1 j=l j J

M x x , =Ix xwx, + (IzIz , - IyIy,)WyJz ,  (81a)

yIyt y y ' I + ( X'x' - IzIzI)Wz,_- (81b)

* MzIZI zIzz, + (lyty, - Ixvx,)Wx ,W y (81c)

where p and q represent the number of ligaments and the
contact point, respectively. Ix'x,, Iy I y, and IzIz, are the

principal moments of inertia of the moving body segment about

its centroidal principal axis system (x',y',z'), and wx', W y
and wz'' are the components of the angular velocity vector
which are given below in terms of the Euler angles:

x'= cosq + $ sine sin (82a)
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(y, = -o sin*p + sine cosi (82b)

z'= cose + (82c)

The angular acceleration components, x and z are

directly obtained from equation (82):

x = 0 cos - k sinp - cos sine)
(83a)

+ sine sinp + $e cose sinip

y= 6 sin - k6 cos* + $ sin sine)
(83b)

+ € sine cosp + $6 cose cosp

z = * cose - *e sine + (83c)

Note that the moments components shown on the left-hand side

of equation 81 are obtained from:

q p
M[ + q T(' x (IN[x (84)e i= ) x ([T8) j=l

where R e is applied external moment, and p and q represent

the number of ligaments and contact points, respectively.

The equations (80) and (81) form a set of six nonlinear

second order differential equations which, together with the

contact conditions (68) and (76), form a set of 16 nonlinear

equations (assuming two contact points, i.e. i=1,2) with 16

unknowns:

a) e, € and , which determine the components of

transformation matrix [T];

b) xo, yo, and zo: the components of position vector
r o;

c) xe, Zc., x' and z. (i=1,2): the coordinates ofc) ci Zici an zi

contact points;

d) INij (i=1,2): the magnitudes of the contact forces.
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Numerical procedure outlined previously can be utilized

for the solution of the three-dimensional joint model

equations presented in this section. However, becuase of the

extreme complexity of these equations, in this report we will

present in some detail only the numerical solution of a two-

dimensional joint model applied to the human knee joint.

TWO-DIMENSIONAL DYNAMIC MODEL

OF THE KNEE JOINT

Thus far, mathematical descriptions of the articular

surfaces, the ligaments and capsule have been developed as

well as general formulations for two- and three-dimensional

4 dynamic model of an articulating joint. These formulations

can now be applied to a mathematical description for the

dynamic motion of the knee joint. The most general and

realistic model of the knee should be three-dimensional.

However, a simpler two-dimensional model can be helpful and

rewarding in understanding the essen~tials of the problem and

serve as the groundwork for the sound development of a three-

dimensional model. Before we present our two-dimensional

dynamic model of the knee joint we will briefly discuss the

previously developed models of the knee.

PREVIOUSLY DEVELOPED KNEE JOINT MODELS

The models of the knee joint can be subdivided into pure

4 kinematical models and models describing the force action in

the joint. Kinematical models try to describe the motions

between femur and tibia without considering the forces and

moments in the joint. A model of this type, developed by

Strasser [19171 is a four-bar mechanism (Figure 30). Two

bars represent the cruciates, while the other bars represent

femur and tibia, respectively. Menschik [1974a,1974b]

extended this planar model by two curves representing the

tibial and femoral articular surfaces and also studied

location of the insertion areas of the collateral ligaments
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Extension Flexion

3 3
24

4 2 42

Figure 30. Four-bar mechanism according to Strasser [1917]
is shown. Components are identified as 1 tibia, 2
anterior cruciate ligament, 3 = femur and 4 = posterior
cruciate ligament.

in this model. Similarly, the model of Huson [1974,19761 is

based on the idea of a four-bar mechanism, but it is also

able to simulate internal-external free range of motion by

means of a certain inclination of the plane representing the

lateral tibial articular surface.

Several planar mechanisms simulating the motion of the

human knee joint in the sagittal plane have been proposed by

Freudenstein and Woo [19691. The aim of this study was to

serve as a guideline in the kinematical design of joint

prostheses. Investigations aimed at accurate in-vivo measure-

ments of three-dimensional relative motions in a human knee

joint so far have not been fully described in the literature.
A study by Levens, Inman and Blosser [19481 was limited to

relative rotations in a transverse plane. In this study,
stainless steel pins of 2.5 mm diameter were drilled firmly

into the femur anid the tibia, sterility precautions and local
anesthesia- bein,7 used. No further attempts using this method

are described in the literature.

The mechanical analysis of the human knee joint has in

the past been carried out mostly with human knec joint
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specimens which can be considered as the best available

representation of the living human joint. The shortcomings

of the knee specimens are the lack of muscle forces and the

difference in material properties from those of the living

joint. Moreover, the availability of the knee specimens for

research purposes is limited. Living and dead animals have

often been used as surrogates for human material in the study

of special problems. For example, the mechanical behavior of

the menisci in canines and pigs have been studied by Krause

et al. [19761 and Jaspers et al. [1978], respectively.

In general, kinematical models offer valuable

possibilities of gaining a better insight into some aspects

of joint hehavior. However, their application is restricted

to phenomena in which force actions are of no interest.

A number of knee models, described in literature, were

not concerned with relative joint motions but were developed

to determine the forces in ligaments, muscles or between

articular surfaces. In these models the joint structures are

simplified in such a way that a so-called statically determi-

nant system is achieved. Consequently, the constitutive

equations of the ligaments are not necessary and the condi-

tions of equilibrium are sufficient to determine the relevant

forces. Two-dimensional models of this type are reported by

Kettelkamp and Chao [19721, Smidt [1973], Perry, Antonelli and

Ford [1975], Seedhom and Terayama [1976], Rens and H-uiskes

(1976], while Morrison [1967,19701 presented a three-

dimensional model.

Although the studies on the biomechanics of the knee

joint have a long history, those studies which are essentially

a mathematical modeling of this Largest and, apparently, most

complicated joint in the body are few. Crowninshield, Pope

and Johnson [1976] felt justified in stating that there were,
at that time, no analytical models of the knee available

which permit the prediction of the response of the joint to
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7-7

either external forces or displacements. In their analytical

model, on the other hand, only the quasi-static response of

the joint was studied and the overall joint stiffness was

obtained as a function of the flexion angle. The method used

by Crowninshield, Pope and Johnson [1976] is the so-called

U inverse method in which the ligament forces caused by a

specified set of translations and rotations in specified

directions are determined by comparing the geometries of the

initial and displaced configurations of the knee joint. In

this method the externally applied displacements do not need

to be continuous; however, the discrete values used are to be

realistic. In Crowninshield, Pope and Johnson [1976] these

values were based on experimental data available in the

literature. The purpose of the work was to obtain the stiff-

ness of the joint which, in turn, required the calculation of

the ligament lengths at various knee configurations. Thus,

it was not necessary to consider the contribution of the

curved joint surfaces to the overall mechanical behavior of

the knee. Moreover, the external forces required for

equilibrium were not determined either.

Improvements to the quasi-static model discussed above
have been proVided recently by Wismans et al. [1980], in

which a three-dimensional analytical model of the femoro-

tibial joint is presented. The study considers not only the

geometry but also the static equilibrium of the system. The

three-dimensional curved geometry of the joint surfaces are

included in the model. Ligaments are modeled as non-linear

elastic springs. The solution method employed by Wismans

et al. [1980] is also a quasi-static, inverse method. The

flexion-extension motion is simulated by prescribing several

flexion-extension angles. The dependent variables of the

problem, including the ligament forces, are determined from

the equilibrium equations and the geometric compatibility

conditions. However, for nonlinear problems of this kind it
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is known that there can exist more than one equilibrium

configuration for a given flexion-extension angle unless an

external force is also specified. Accordingly, in the

inverse method utilized by Wismans et al. [1980] it is

necessary to specify the external force required for the

preferred equilibrium configuration. Such an approach is

applicable only in quasi-static analysis. In dynamic analysis,

the equilibrium configuration preferred by the system is the

unknown and the mathematical analysis itself is to provide

that equilibrium configuration.

Biomechanics of the knee joint has also been investigated

by Andriacchi et al. [1977,1978]. They reported a statically

indeterminate model for the analysis of motion and forces in

the knee joint. Like Crowninshield, Pope and Johnson [1976],

they represent ligaments and capsule by a number of springs,

while the articular surfaces and menisci are also represented

in the model. Numerical predictions are consistent with

experimental observations. The models of Andriacchi et al.

[1977,1978] and Wismans et al. [1980], are essentially the

same in the sense that both deal with the quasi-static

response of the knee joint. Detailed discussions of various

anatomical api functional aspects of the human knee joint can

also be found in Gray [1973], Engin and Korde [1974],

Blacharski, Somerset and Murray [1975], Jacobsen [1976], Pope,

et al. [1976], and Engin [1978].

As seen from the preceding discussion, mathematical

modeling of the knee joint has not yet reached a definitive

stage of development. It is interesting to note that a

biodynamic model of the knee joint is, to the best of the

authors' knowledge, not yet available in the literature. It

is more appropriate to study via a dynamic model the response

of the joint to dynamically applied loads. The artificial

restrictions of the quasi-static inverse method, such as the
I

necessity to specify the preferred configuration, can be

-94-

I



7 7

eliminated if the dynamics of the problem are incorporated

into the model.

TWO-DIMENSIONAL GEOMETRY OF THE KNEE JOINT

Coordinate Systems

Previous sections have discussed the relative positions

and coordinate systems for.a general, two-body segmented

joint. Uniquely specifying the locations of these coordinate

systems is virtually impossible because of the lack of well-

defined anatomical landmarks in the human body. However, the

relative motions in a joint are not affected by the choice of

coordinate systems and only some parameters describing the

relative displacements have different values for different

coordinate systems.

The position of the tibia, defined as the moving segment,

relative to the femur, defined as the fixed segment, is shown

in Figure 31. The origin of the moving coordinate system

(x',y') coincides with the center of mass of the tibia, with

the y'-axis being directed along the longitudinal axis of the

tibia. The inertial coordinate system (x,y) is attached to

the fixed femur with the x-axis directed along the posterior-

anterior direction and the y-axis coinciding with the femoral

longitudinal axis. The locations of the origins of these

coordinate systems, shown in Figure 31, are 4.01 cm and

21.34 cm from the intersection points of the y and y' axes

with the articulating surfaces. The rotation of the moving

(x',y') coordinate system with respect to the fixed (x,y)

system is denoted by ~

Mathematical Descriptions of the Articulating Surfaces

The two dimensional profiles in the plane of motion of

the femoral and tibial articulating surfaces are obtained

from X-ray of a human knee joint. The coordinates (x klyk)
of a number of points on these profiles are measured using a
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I Figure 31. Coordinate systems locations and relative positions

of the tibia and femur are shown for the two-dimensional
dynamic model of the knee joint.

"! two-dimensional sonic digitizing technique described previously
; (Figure 32).
~A polynomial equation of degree n(n>l) is used as an

approximate mathematical representation of the profile under
- consideration. This polynomial has the form

n
1

g where A31 s are the polynomial coefficients. These coefficients
are determined by the use of the subroutine program CHEPLSy(Appendix A). This subroutine is capable of determining, bymeans of statistical tests, where the set of given data pointsare linear or nonlinear. If the data are nonlinear at the
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Microphon /Sensor (2-D) X-ray

Stylus Menu

Figure 32. Two-dimensional microphone/sensor with menu
capability, and sonic emitter/stylus for the Graf/Pen sonic
digitizer is shown with x-ray of the knee joint in place for
obtaining the profiles of the articulating surfaces.

95% confidence level, then the routine finds the lowest
degree polynomial which adequately represents the data. The

calculation procedure is to compare the standard deviation of

the model of degree n with that of (n+l)th degree model. If
there is no significant difference at the 95% confidence

level, then the polynomial of degree n is accepted as the

lowest degree polynomial which adequately represents the data.
In the present study, this method yields the following

equations for the femoral and tibial profiles, respectively:

fi(x) = 0.04014 - 0.247621 x - 6.889185 x2 - 270.4456 x3

-8589.942 x4 (86)
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f2 (x') = 0.213373 - 0.0456051 x' + 1.073446 x1 2  (87)

with the aid of the Versatec plotter, the tibial and femoral

articulating surfaces predicted by equations (86) and (87)

are shown in Figure 33.

DESCRIPTION OF THE LIGAMENT MODEL

Selection of the Springs and Corresponding Parameters

Only four major ligaments of the knee joint will be

considered in the present work although consideration of any

other ligament presents no difficulty. These ligaments are

the lateral collateral (LC), the medial collateral (MC), the

anterior cruciate (AC), and the posterior cruciate (PC). The

ligaments are modeled as nonlinear elastic springs having a

ARTICULATING SURFACES AND LIGAMENTS OF
A KNEE JOINT MODEL

Figure 33. Versatec plot of the two-dimensional representa-
tions of the tibial and femoral articulating surfaces.
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constitutive relation given by equation (3). The stiffness

values for these ligaments are summarized in Table 8. Initial

strains in the ligaments are taken as zero since, at present,

there is no accurate data available on strains as a function

or flexion angle. Zero strain condition for the ligaments

can be partially justified if an appropriate starting flexion

angle under no external load is chosen.

Insertions and Origins

The coordinates of the insertion points of the ligaments

in both the tibia and the femur are determined from the

available information in the literature (Wang, Walker and

Wolf, [1973], Crowninshield, Pope and Johnson [1976]) and close

anatomical study of the knee joint. These coordinates on the

tibia are denoted by x! and y!, and those on the femur are

denoted by x. and yj. The values used in the present work

are summarized in Table 10. Obviously, these values are

determined with respect to coordinate systems shown in Figure

31, and for the specific specimen used in our study.

Table 10

COORDINATE VALUES FOR THE INSERTIONS AND ORIGINS
OF THE KNEE JOINT LIGAMENTS, IN METERS.

TIBIA FEMUR
LIGAMENT

x! y! x yj

Medial Collateral 0.008 0.163 -0.023 0.014
(MC)

Lateral Collateral 0.025 0.178 -0.025 0.019
(LC)

Anterior Cruciate -0.00S 0.213 -0.023 0.019
(AC)

Posterior Cruciate 0.025 0.208 -0.032 0.024
(PC)
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MATHEMATICAL DESCRIPTION OF THE DYNAMIC
MOTION OF THE KNEE JOINT

The total external forces acting on the tibia are shown

in Figure 34. These forces are: ligament forces, F.

(j=l,--4); normal contact force R; and the applied external

force, Fe and moment, M Frictional forces between the

femoral and tibial surfaces will be neglected since the

coefficient of friction between the articulating surfaces,

owing to the presence of the synovial fluid, is known to be

very low (Radin and Paul [1972]; Dowson [1976]). Therefore,

the contact force, N, will be in the direction of the normal

to the surface at the point of contact.

The equations governing the forced motion of the tibia

are:

TIBIA

IX1

F, MEDIAL COLLATERAL X

F,= LATERAL COLLATERAL
Fz= ANTERIOR CRUCIATE
F.= POSTERIOR CRUCIATE FEMUR

Figure 34. Forces acting on the moving tibia are shown forrthe two-dimensional model of the knee joint.
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(Fe)x + yN(nl)x j F(X) =Mx °  (88)

ii: 4
(Fe)yI Fj(x) M 0 (89)

yj= Y( = Myo

4
Me + (Ta') x (yNnl) + I (Tpt) x (FjXjl = Iza (90)

e 1 j=l 3 z

where all the parameters in the above governing equations have

been defined in previous discussion on the two-dimensional

general formulation for dynamic motion.

NUMERICAL ANALYSIS AND DERIVATIONS

The differential variables, xo, yo' and a are substituted

by their corresponding Newmark approximations given in equa-

tions (49) and (50). Subsequently, these simultaneous non-

linear algebraic equations along with geometric compatibility

and contact conditions of equations (8) and (36) are

linearized by applying the Newton-Raphson iteration process.

After considerable amount of mathematical operations and

eliminations of the second order variational terms (see

Appendix B for complete derivations), the following final form

of the linearized governing equations of motion are obtained:

4
k k 4M4

(Ynlx)6 + (yNkn - = - F. - (F e)Snlx At 6 j= jX x (91)

- nk+ M 4[xk t-At] 4,*t-At . xt-At

yn N knly At 2 yo j=l jy e y (92)

k k + 4 k t-At] 4 1t-At t-At-y ly 7 0 -t[ O -Y At o -o
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SF. 6 [ F. N n ]sF6

j=l j=l jy Yxo j=1

+ [I F(Yx + y)n> 1 + IY (xk xk0n)y +Y [Yon x]6

[yN (Yc ]6nix 0+ ilx c

(93)

41 4 4-kkL z kk X~ .zc o
(yN n1 )6 -- I~ (x _ xk) yky)

6yc  +t X jj 0 j~jx

ix YC At j =1
k[(c -k 'n -kk k -k k + I (a k at -At

4 .t-At "t-At M
t a -e

Similarly, the linearized geometric constraint equations are:

6Xc -6 + (x'k sinak + yIk Cosa k)6 cosak 6I Xc Xo + CO a -

(94)
+sinak y xk - k + xk cosa k yk sina k

6 - 6 - (xckcosak _ y ksinak) 6  - sinak6xc

(95)

cosa ky6  =k _ k + xIksinak + yIkcosa k

[pk sink + cosak 16 [Qk sink - cosa ]dp

+ [cosak (1 + PkQk) + sina (Pk Q k) (96)

.= - k + pkQ cosak ( P Qk)]

Other variational relationships which must be solved simulta-

neously with equations (91) through (96) (See Appendix B) are:
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(a) Variation of ligament insertion coordinates, (xj,y

+ (x! sinak + y! cosak)68xJ 6x°(97)

- . + x, Cos - y! sinak (j=l,..,4)!0

6yj Yo - (x! cosak -
y ! sinak )

(98)
k+ k+k

Y + y + x! sinak + y! cosk (jCl,..,4)

(b) Variation of articulating surfaces, yc = fl(Xc) and

Yc' fz (xc):

k k 2 k 3
- [A2 + 2A x c + 3A4 (C) + 4AS(' C) 162C A 1

(99)

+ A x k + A3k) 2 + A4k 3 + A k(X k) 4 - k
2 c 3(c 4?.xc + A5 x

6, -(A + 2AIx k)6x, = A' + Axck + Ax y (100)2 3 c I 2

(c) Variation of first derivatives, P and Q of the articulating

surfaces, y = fl(x) and y' = f2 (x'), respectively:

k k k2

6p (2A3 + 6 A4xc + 12A x 2 )6xc = A2 + 2A3Xc + 3A4xk

0 k (101)
+ k3  k+ 4 Asx c

6 2AI 6 x, A + 2A xk k (102)
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(d) Variation of the components of unit normals, nI and n :

6 Y 6 = YPk nk  (103)

nix + (1 + pk2 )3/2 (1 + pk 2 )l/2 x

+ yPk 6p = + - nk (104)6nly 1+ k2) 3 / 2  (1 +k2) 1 / 2  l

: I+[ lQ-k_3/k nkX (105)n2x' (+Qk2) 3 / 2  (I +k2) I / 2  2x

Bqki +Q Q + -Qk,16

[nY' (1 + Qk2)3/ 2 ] Q + Qk2 1 / 2  (106)

where =df 2 / Id f21  d df 1  dfwhere d2/ ,and y------d2 d x dx / dx ' 2

Equations (91) through (106) form a set of 22 simultaneous
algebraic equations defined by equation (52). The vector, A,
of equation (52) has the following elements: 6xo, 6yo, 6N,
6x c ,  6xC, 6xji (j=l,..,4), 6yj (j=l,*.,4), 6nlx, 6nly ,% 6n2x, ,

6n2y'' 6Yc' 6YC, 6p and 6Q, where

6. o = x-coordinate variation of the center of mass of the
0 tibia.

6 = y-coordinate variation of the center of mass of the
tibia.

6a  = variation of the orientation angle, a, of the tibia

with respect to the femur.

6 N  = variation of the normal force, N.

6xc = x-coordinate variation of the contact point, C, in the

(x,y) system.

6x ,  = x-coordinate variation of the contact point, C, in the
c (x',y') system.
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"°= x-coordinate variation of the ligament insertion

points, (j=l,..4).

6 = y-coordinate variation of the ligament insertion

points, (j=l,..4).

6= x-component variation of the unit normal vector to

the articulating surface of the femur.

6ly = y-component variation of the unit normal vector to
the articulating surface of the femur.

6 = x-component variation of the unit normal vector to

the articulating surface of the tibia.

6 = y-component variation of the unit normal vector to

the articulating surface of the tibia.

6 = y-coordinate variation of the contact point, C, in

the fixed (x,y) system.

6, = y-coordinate variation of the contact point, C, in
the moving (x',y') system.

6p = variation of the first derivative of the femoral

articulating surface equation.

6Q = variation of the first derivative of the tibial

articulating surface equation.

After applying an external force and moment to the center

of mass of the tibia, the above system of 22 equations are

solved for the 22 variables by the computer program JNTMDL.

SOME ASPECTS OF THE COMPUTER PROGRAM, JNTMDL

Following the numerical procedure described previously,

the system of 22x22 equations defined by equation (52) are

solved using the JNTMDL program given in Appendix C.

Prescribed constant parameters used in the program are:

(a) the coordinates (xj,yj) and (x',y!) of,

respectively, the insertions and origins of the

ligaments.

(b) stiffness values of the ligaments, kj.

(C) mass, M, and mass moment of inertia, Iz, of the

moving tibia.
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(d) initial linear (Xo' Yo' X0 1 YO) and angular (t,

a) velocities and accelerations of the center of

mass of the moving tibia.

(e) coefficients, Ai and A!, of the articulating

surface equations, y = fl(x) and y' =f2(x'),
respectively.

(f) applied external force, Fe, and moment, Me '

(g) time increment, At.

(h) convergence criterion, omega.

By specifying the initial contact points, xc and xc, the

JNTMDL program first determines the starting configuration of

the moving tibia relative to the fixed femur. This is done by

satisfying the geometric compatibility equations (14) and

contact conditions (36). After applying the prescribed

external force and moment, by the use of iteration process,

the JNTMDL program calculates the 22 delta variations at each

iteration. The iteration process at a fixed time station

continues until the delta quantities of all variables become

negligibly small. In the present work, a solution is accepted

and the iteration process is terminated when the delta

quantities become less than or equal 0.01% of the previous

values of the corresponding variables. The converged solution

of each variable is then used as the initial value for the

next time step and the process is repeated for consecutive

time steps. In. our application of the method, only 5-6 itera-

tions were necessary for convergence most of the time. But

there were also cases where more iterations were required for

convergence. This was especially true at instants at which

there was a sudden, sharp change in the response of the tibia.

Such behavior manifested itself usually when the tibia started

mqving in the opposite direction due to the fact that the

pulling force of a ligament(s) became the governing force of

the problem. Shorter time steps required fewer iterations,

as expected, even at the situation described. The time

increment used in the present work is At = 0.0001 second.
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At each converged solution, the following quantities are

determined by JNTMDL program:

(a) The orientation angle, a (flexion angle), of the

moving tibia relative to the fixed femur.

(b) The position (xo,Y o ) of the center of mass of

tibia.

(c) The linear (xoyo) and angular accelerations of

the center of mass of the moving tibia.

(d) The location of contact points, xc and xc,' on the

fixed femur and moving tibia, respectively.

(e) The magnitude of the contact force, N, exerted on

the moving tibia.

(f) The magnitude of ligament forces, F .

(g) The external energy supplied to and internal energy

generated by the moving tibia, for comparison

purposes.

The final section of this report will present results

from this program for several loading conditions applied

through the center of mass of the tibia.

NUMERICAL RESULTS

The numerical results to be presented are only for an

external force acting on the tibia without the presence of an

external moment. It is assumed that the force is always

perpendicular to the longitudinal axis of the tibia (y'-axis)

and passes through its center of mass. Let this force be

denoted by P(t). A parametric study of the effect of various

combinations of moment and force acting simultaneously on the

response of the knee joint may prove to be rewarding.

However, for the present work we will only consider an exter-

nal force and believe that this will be sufficient to

illustrate the capabilities of the model. The effect of the

shape of the forcing function on the knee joint response will

be studied by considering the following two functions for P(t):
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P(t) = A[H(t) - H(t-t0 )] (107)

which is a rectangular pulse of duration to, and amplitude A;

and

-4.73(t/t0 ) 2 /t
P(t) =Ae -. 3tt) sin -(108)

which is an exponentially decaying sinusoidal pulse of

duration t0 , and amplitude A. A dynamic loading in the form
of equation (107) is extremely difficult to simulate

experimentally; however, the study of these two functions will

hopefully be helpful in understanding the effect of rise time

of the dynamic load on the joint response. Equation (108) is

a more realistic forcing function and it has been previously
used as a typical representation of the dynamic load in head

impact analysis (Engin and Akkas, [1978]).

The following are obtained as a function of time from
the computer program, JNTMDL; the coordinates xo,y o of the
center of mass of tibia; the flexion angle a; the coordinates

xc and xI of the contact point in (x,y) and (x',y') coordinate

systems respectively; the magnitude, N, of the contact force;
the elongations of the ligaments and the ligament forces, Fj;
and the internal and external energies of the system.

The initial values for xo, YO and a are obtained by
specifying the location of the starting contact point. Here,
the following values are used for the coordinates of the

contact point at t = 0:

xc = -4.2 cm , xc = 2.5 cm

which yields

x0 = -20.16 cm Yo = 17.49 cm and a = 234.790

This angle of rotation a, corresponds to a flexion angle of

54.790 for which the ligaments of the knee joint are in a
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relatively relaxed condition. It was reported as early as

1907 by Pringle that the position of maximum relaxation of the

knee joint ligaments was approximately halfway between full

flexion and full extension of the knee joint.

The effect of pulse duration on the response of the knee

joint motion is studied by taking to = 0.05S, 0.10S, and 0.15S

for both rectangular and exponentially decaying sinusoidal

pulses. The effect of pulse amplitude, is also examined by

taking A = 20N, 60N, 100N, 140N and 180N for both types of

pulses.

Ligament forces as functions of flexion angle of the knee

joint for the two previously described forcing functions are

presented in Figures 35 through 40. Results indicate that

when the knee joint is extended, by a dynamic application of

a pulse on the tibia, lateral collateral, medial collateral

and anterior cruciate ligaments are elongated while the

posterior cruciate ligament is shortened. The load carried by

the anterior cruciate ligament is substantially higher than

those of the lateral collateral and medial collateral

ligaments.

The variation of the lengths of ligaments and the forces

carried by them during normal knee motion has been the subject

of various studies reported in the literature and in these

studies several different opinions and conclusions have been

expressed in regard to the biomechanical role and function of

various ligaments of the knee joint. The function of the

anterior cruciate as depicted in the dynamic knee-model

developed in this research program is to resist anterior dis-

placement of the tibia. This function is in general agreement

with the experimental and clinical studies of Kennedy and

Fowler [1971]; Girgis, Marshall and Monajem [1975]; Van Dijk,

Huiskes and Selvik [1979]; and quasi-static model analyses of

Crowninshield, Pope and Johnson [1976]; and Wismans [1980].
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Figure 35. Ligament forces as functions of flexion angle,
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duration and amplitude of (a) 60 N, (b) 100 N, (c) 140 N
and (d) 180 N.
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Figure 37. Ligament forces as functions of flexion angle,
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Figure 38. Ligament forces as functions of flexion angle,
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Figure 40. Ligament forces as functions of flexion angle,
for an externally applied, exponentially decaying sinusoidal
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The role of the posterior cruciate as predicted by the

model is to resist posterior displacement of the tibia. This

function of the posterior cruciate ligament is in agreement

with the experimental studies of Kennedy and Grainger [1967];

Edwards, Lafferty and Lange [1970]; Girgis, Marshall and

Monajem [1975]; Crowninshield, Pope and Johnson [1976] and

Wismans [1980].

The present dynamic model also predicts that the medial

and lateral collateral ligaments offer very little resistance

in the flexion-extension motion of the knee joint. The major

role of these ligaments is to offer varus-valgus and partial

internal-external rotational stability. The model shows that

4as the knee joint is extended under influence of a dynamic

load the lateral collateral and medial collateral ligaments

elongate at different magnitudes. This prediction is in

general agreement with the experimental results of Smillie

[1970]; Edwards, Lafferty and Lange [1970); and Wang, Walker

and Wolf [1973].

The model shows good agreement with the quasi-static

experimental investigations reported in the literature. It

is important to note that the dynamic model presented in this

report is an idealized representation of a very complex

anatomical structure; thus, static experimental studies may

not support some of the predictions of the model. Additional

e disagreements may also be due to approximate locations of the
attachment sites of the ligaments in particular, and two-

dimensional nature of the model in general.

In Figures 41 and 42, a few representative plots of

forces in the anterior cruciate and lateral collateral liga-

ments are plotted as a function of time for two different

forcing functions with varying pulse durations. Although not

presented here, similar curves may be obtained for other pulse

durations and pulse magnitudes. Generally, the shorter the

pulse duration, for a fixed amplitude, the sooner the tibia
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reaches its turning point (i.e., direction of motion reverses)

and for a given pulse duration, the smaller the amplitude, the

sooner the turning point is reached. In Figures 44-47 the

values in parentheses indicate the flexion angles at the

corresponding times. Note that, for illustrative purposes up

to 60 of hyperextension was allowed. Generally, one expects

only 1 to 30 of hyperextension to be anatomically tolerable

beyond which joint failure becomes unavoidable.

In Figures 43 and 44, contact forces as a function of

time are plotted. These forces are in response to the

different forcing functions with varying amplitudes and pulse

durations. Note that the magnitudes of the ligament and the

corresponding contact forces in response to a particular

forcing function are comparable.

Femoral and tibial contact point locations as a function

of flexion angle are plotted in Figures 45 through 50. In

these figures the values in the parentheses indicate the total

elapsed time of the motion since its initiation. As the

flexion angle decreases, it can be seen that, the curves

representing femoral contact points have a steadily increasing

positive slope, while the curves of tibial contact points

change slope from positive to negative or vice-versa at

various flexion positions. This phenomenon may be explained

by the combined rolling and sliding motion of the tibia on

the femur; that is, positive and zero slopes of the curves

representing the tibial contact points can be interpreted as

corresponding to the sliding motion, while negative slopes

indicating the rolling motion of tibia on femur. Generally,

the curves of tibial contact points have predominately

negative slopes toward the end of the extension motion

indicating that in this part of the motion rolling is the

'essential component. These results are in general agreement

with the work of Walker and Hajek [1972] ; Kettelkamp and

Jacobs [1972]; and Wismans, et al. [1980].
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Figure 46. Femoral and tibial contact points as a function
of flexion angle for an externally applied rectangular pulse
of 0.10 second duration and amplitudes of (a) 60 N, (b) 100 N,
(c) 140 N and (d) 180 N.
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In Figures 51 and 52, total internal energy of the moving

tibia as a function of flexion angle are plotted. This total

internal energy is defined as the summation of potential

energies of the nonlinear elastic springs, simulating the

ligament forces, and the kinetic energy of the tibia. As it

can be seen from these curves, for a given pulse shape of

fixed duration, as the pulse magnitude increases, the knee

joint further extended and the entire motion has a shorter

response time period. External energy of the system is also

calculated based on the applied external forces. Continuous

plots of total internal and external energy of the system for

two different pulse shapes of specified magnitude and duration

are presented in Figures 53 and 54. These figures show that

the total internal and external energies of the system remain

the same except for the latter part of the motion, which is

due to the accumulation of numerical round-off errors.

Finally, for illustrative purposes, with the aid of Versatec

plotter, continuous plots of x0,y0 (coordinates of the center

of mass of the tibia); xc and x, (femoral and tibial contact

points, respectively) and flexion angle, a, as a function of

time are plotted in figures 55 and 56.

SUMMARY AND CONCLUDING REMARKS

The research work discussed and presented in this report

can be summarized in the following paragraphs:

1. Detailed anatomical description and articulation of

the elbow, shoulder, hip, knee and ankle joints with suffi-

cient illustrative figures for each joint were presented and

major anatomical parts have been identified using the

generally applied medical terminology.

2. Mathematical descriptions of the articulating

surfaces of elbow, hip, knee and ankle joints have been

determined by means of a sonic digitizing technique. The

attachment sites of the major ligaments of each joint were

also determined'and tabulated.
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3. A review of the available literature on the

biomechanical behavior of soft tissues in general and liga-

ments in particular was presented. An appropriate constitu-

tive equation for the elastic behavior of the ligaments was

established.

4. Two- and three-dimensional mathematical dynamic

models of a general two-body-segmented articulating joint

have been formulated in order to describe the relative motions

between the segments and the various forces produced at the

joint. The governing equations for these models are set of

highly nonlinear equations and numerical solutions were

discussed in some detail.

5. The two-dimensional model was applied to the knee

joint and the numerical results from this model were presented

to illustrate the effects of duration and shape of the

dynamically applied loads on the response of the joint.

Special attention has been given to the ligament and contact

forces, the location of contact points, anterior-posterior

displacements and the comparison between the internal and the

external energy of the system. The results were compared

with the available experimental data from the literature to

establish the validity of the model.

It is appropriate to make several remarks on the

numerical techniques tried in the course of obtaining the

solution for the governing equations of the two-dimensional

dynamic model (equations (45), (46) and (47), coupled with
constraint equations (14) and (36),. In the first method, the

second-order differential equations were transformed to a set

of nonlinear algebraic equations by substituting for the

differential elements, their equivalent backward difference

approximations. In this case, it was impossible to obtain a

converging solution due to the highly nonlinear nature of

these equations.
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In the second method, the flexion angle, aof the moving

tibia and contact point coordinates, xc and x1 were obtained

from the simultaneous solution of the three nonlinear con-

straint equations. Knowing a, a was obtained via backward

difference method and then the normal force, N, was determined

from the third equation of motion. The other two second-

order nonlineai differential equations which were in terms of

xand yo were written as a set of four first order

differential equations by direct substitutions. Runge-Kutta

method was applied to these equations and solutions for p

Yand their time derivatives were obtained. Using the new

values of xo and yo, a new value of a and contact point

coordinates were obtained and the entire procedure was repeated

for the next time step. Although mathematically all the

geometric constraints and governing equations of motion were

satisfied, the results obtained using this second method were

not in agr ment with the actual physical geometry and the

anatomy of the joint. This was concluded to be due to the

solution technique which was not solving all the equations

simultaneously, and during the solution process it was forcing

some of the variables to accept values which were mathemati-

cally correct but physically unacceptable. Finally, the

Newton-Raphson iteration process along with Newmark method of

differential approximation was chosen as the method of

solution which yielded accurate and stable solutions for the

model. The entire numerical procedure has been explained in

detail in previous sections.

The extension~s of the research work presented in this

report can be in several areas. One can investigate the

influence of the variations of initial strain of the ligaments

and their attachment sites (i.e. insertions and origins) on

the response of the model. A parametric study addressing to

these points may reveal the sensitivity of the model to the

variations of the coordinates of the insertions and origins of

the ligaments.
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In a similar way the mathematical models of the other

major articulating joints can be developed. However, a

special attention should be given in modeling of the ligaments.

Some ligaments, particularly the thick band or large cord-like

ligaments, have complex behavior, with various portions

behaving differently under given conditions or configurations.

These are described in the literature as, in the case of the

broad ligaments of the hip joint, having anterior and

posterior fibers, or medial and lateral components. The

mathematical model should include additional elastic elements

to reflect the contributions of various fibers of the ligaments.

Unfortunately proper experimental data to determine the

constitutive behavior of these thick band or broad ligaments

do not exist.

Finally, the numerical procedure utilized in the solution

of the two-dimensional dynamic joint model equations should

be applied to the three-dimensional dynamic model formulation

presented in this report. Considering importance and rele-

vance of a three-dimensional dynamic joint model to the Air

Force related applications, a very serious effort should be

expended in the direction of obtaining numerical solutions

for this complex joint model.
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APPENDIX A

COMPUTER SUBROUTINE CHEPLS:
A LEAST SQUARES CURVE-FITTING ROUTINE

The calculation most commonly performed on experimen-

tal data is to fit the data with a polynomial of the form:
2~ D 3  

.. MNF(X) = A + BX + CX +D + .. ,M which is best in the

least squares sense. CHEPLS routinely performs this cal-

culation. Data input is simple enough so that no prior com-

puter experience is required for its use.

The routine determines by means of statistical tests

whether the set of data is linear or non-linear. If the

data are non-linear at the 95 percent confidence level, the

routine finds the lowest degree polynomial which adequately

represents the data. The calculation procedure is to com-

pare the standard deviation of the model of degree n, with

the standard deviation of the (n+l) thdegree model. If

there is no significant difference at the 95 percent con-

fidence level, then it can be said that in 19 out of 20

such sets of data, the polynomial of degree n is the low-

est degree polynomial which adequately represents the data.

CHEPLS prints out the least squares coefficients for

all polynomials, from the first degree through the highest

degree calculated. For each polynomial, the standard de-

viation and the confidence bands about each coefficient at

the 95 percent level are printed. Values of Y are calcu-

lated from the model for every value of X, and are compared

with the observed (ie, experimental or input) values of Y.

The least squares matrix is printed for reference in the

event additional statistical calculations are needed. The

Y values are coded by subtracting a constant to reduce

round-off error. As many as 1000 data points may be sub-

mitted in each data set. CHEPLS will produce polynomials
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up to degree ten. Data sets may be stacked, one behind the

other for additional data sets.

RESTRICTIONS

(a) The number of data points must be less than or equal to

1000.

(b) The maximum degree polynomial is 10. Even in double-

precision, round-off error may accumulate sufficiently

to invalidate results for even as low as a 5 thdegree

polynomial.

(c) All numeric data must be right-justified in the field.

INPUT DATA

4 Each data set consists of a data header, a label and

one or more data cards and a termination card. For stacked

data sets, only the final data set may contain a termination

card. All fixed point variables or integers are entered

without a decimal. Floating point variables require a deci-

mal in the field.

(a) Data Header

Columns 4-5 Enter the number of data points

in this set.

Columns 9-10 Blank for normal use. For ob-

taining all polynomials up to the

nt degree (maximum of 10), enter

4 n. All least squares polynomials

will then be calculated for degrees

1 through n.

(b) Label

Columns 1-80 Enter any alphanumeric identifica-

tion to be included on the print-

out for descriptive purposes.
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(c) Data Cards

Columns 1-80 Enter two data pairs per card, as

X, Y, X, Y. Format may be either

4E18.8 or 4F18.8. Note that for

an odd number of data sets, columns

37-80 of the final data card will

be blaak.

(d) Termination Card

Columns 23-25 Enter END to signify the end of da-

ta entry: no further data sets.

The job control language for running this subroutine is as

follows:

// TIME=(0v25) tREGION=192K
/*JOBPARM LINES=IO00PCARDS=100PDISKIO=1300
/1*

// EXECUTE THE CHEM ENG LIBRARY PROGRAM CHEPLS
//*

°//STEP9 EXEC PGN=IELvPARN='XREFLISTMAP' TIIE-(Ov30)
//* STEPD IS LINK EDIT STEP (LOAD MODULE ASSEMBLED)
//SYSLID DD DSNAE-SYSI.FORTLIDBDISP=SHR
/1 DD DSNAME-FEA680.CHEMENGRPDISP=SHR
// DD DSMAME-SYS2.FORTSSPPDISP-SHR
//OLDLID DD DSN AME-FEA680.CHEMENGRDISP=SHR
//SYSLMOD DD DSNA#IE=llO(MAIN)UNIT=SYSDASPACE-(CYLP(1,I11)), 1
I/ DISP=(NEVPPASS) PDCB=(RECFM=U,3LKSIZE=3072)
//SYSPRINT DO SYSOU7-A
//SYSUT1 DO UNITzSYSDAeSPACE-(CYLv(2P1))
//SYSLIN DD

INCLUDE OLDLIB(CHEPLS)
I,

//STEPC EXEC PG,I.STEPB.SYSLMOD,REGION-126KtTINE-(1,O0)
//S STEPC IS EXECUTION STEP
//ISUOURP DO SYSOUTUA
//FTO5FOO1 DD DDNAME-SYSIN
/,'F TDAOO1 DO SYSOUT-A
//FTO7FI01 DO SYSOUT-I
,,/SYSIN D $
//8 REMOVE THIS CARD AND REPLACE WITH DATA DECK (BLANK CARD IF NO DATE)
/1
//
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APPENDIX B

APPLICATION OF NEWTON-RAPHSON METHOD
IN THE DERIVATION OF THE LINEARIZED GOVERNING

DYNAMIC EQUATIONS OF MOTION FOR THE KNEE JOINT

EQUATIONS OF MOTION

a) From equation (45):

4
j Fix + y N nlx + (Fe)x =Mx0  (Bi)

j=l e

in (BI) let:

N=Nk+

ni n k +6 i
nix = lx + nl x

~0 x

Then

4

j + y(Nk + 6N)(nlx + 6 nlx) + (Fe)x  0

4 knk k k
SF. + y[Nn + + n lx6N + (Fe)x  Mx0j=1 jx lx' lxNIxF

Let

.. 14 k 4-- -
x 4I~ k+ 6~ )-x tAt 4 t-at - xt-At

x At + X 0 At to 0

Then

k k 4
(yn )s + (yN k)6 4M F. -(F)

x xN n l A7x 0 i1 jx e x

k k - + M 4 X- t-At - 4 t-At xt-At (B2)
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b) From equvation (46):

4
. F. + yN n (F )y y (B3)

j=l jY ly e Y

in (B3) let:

N = Nk+ 6N

k
nly = ly + nly

Yo= Yk + 6
0 YO

Then
4 ~ k= Y"

F. + y[(Nk + 6N)(nly + 6ny)] + (Fe)y
j=l jY

k k kF. + y[N nly + Nkn + n ] + (F) =My
jy lynly lyNI ey MO

j=1

Let
• "t 4 kt-At] 4 ot-At ""t-AtI

Yo=ti [(Yo + 6Y) - Yo - y

At7 0 YO 0 A

Then

y N (yNk)6nly At yo j F. Y(~n1 =- .- (F=1J~ey

Nkk + M 4 [ k - tAtl 4 t-At t-At (B4)-y ly 0 0 [o -o t At Yo (B4

c) From equation (47):

4 4
. (x. - X0 )Fj  - (Yj - yo)Fj + yN[(x c - 0o)nly

"{Yc- YO)n lx + Me = z (BS)
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in (B5) let:

y +6

yj= i y.

N =N k + N

xc =xk +

C C

lyc = yk +

n0 k +

n nk + 6
o y nl

0 Xk + 6

0= x 0 J

0

Yo~ -0k + (6 -6Y[O 6 } M
+C 6mni'

4 k - k 4 k k 4
I Cx. - x +~ (a - I [(y yo) + 66y - o)]F

j=1 1 0J =

+~. .6 0+ y(Nk + 6 )[k +

4 + 6 N) [(Xc x ~-10- 6 x0 l

__[____ kj 66 ) [nk + 6+ M z



k k k k k k k
+ 0x o)nly + fly 6x - niy ] 0. - o0) lx

(c YO l n ix lx YC nlx 6y 0 +Me Iz

or

44 4 F

j= -. 0 j =1 j j=1 J

4 4 4kk kk
-~l F.yj+ 6 -I F. + yNk (x k

+ yN k (xk - xk6+ (yN k nk) 6 - (yN knR k)6~

-N k(yk - y k k -N k (yk - k ) ~yN 0) lx N(c 0 Nkk i Y

" yN knk6 + Cx - x k)n k 6N k y - nlYO c o ly N-yc Yo lx N

"Me = z

Let:

at+1647 k t-At 4 4t-At _ at-At

Then

4 4 k k4
1 F.6P [ I F. yN ni ]6~ 1 F. 6

jsl JYx3  j=l jy+ lyX j=i. jx YJ

+ .+ yknk]6+ r~ k xk )nk - yk yk k
- jx y~ix]~ YO X - o0 ly - >c o Onlx]8N

k k zk k ,k k

- yN ni )6S (xj 1  )F + I Cyj yo)FIxY At j1 l j1jj
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..- u . . . ..- . .u - .-

kyN k(x k x k k k k k 4k t-tN c )n 1
y  ( - Yo)n k x ] At

4. -t-At ".t-At
A- -e (B6)

CONSTRAINT EQUATIONS

From equation (8)

= + X' Cosa y' Sina (B7)

in (B7) let

X =xk + 6

C C X
C

k

) = X + ++ )

-c, = +c + ) + 1

C

Os= a + 6

Then

(x k  (x kX) = + 6Xo + k + 6x Cs~k + 6o

-y (Yk + 6yc,)Sin(a k + 6=

assuming

Cos(a k + 6o Cosa k  6 Sina k

a
Sin(m k + 6 a) =Sina k  -6 Cosa k

then
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(- k )( k ) + (xkk+ x,-o6 Sinak(Xc + ) =(Xo +6 ) (x+ )(os Sa
c o c0 x0c c

(Y+ 6)(Sinak + 6 Cosak)

or

(Xo + 6 ) (X + + xk Cosa _ Sina k6 + Cosa k
c xc0 x0 C C a C

k k ,k k
- ycSina - yc Cosa 6 - Sinak

C CYc

or

6 x + (xck Sinak + Yk Cosak)6  Cosak6
C 0x Cxo C Yc a -2oak x

C

+ Sinak , = Xk - xk + xk Cosak - Yk Sinak (B8)

yc 0 C c c

Similarly from equations (8):

Yc = y + X' Sina + Y' Cosa (B9)

the variation equation is:

6 - 6 (x kCsak - ycksinak) 6 a - Sinak 6 '
YC YO Ca C

Ck k k ,k k ,k k(B)
- C a y - y + x Sina + y Cosa

yc' 0 C C C

From equation (36)

I df df Co. f dfSina + ) - Cosa (d- 2 (Bll)

From eqs. (85), (86) and (87), equation (Bll) can be written as

Sina[1 + (A2 + 2A3 xc + 3AlX2 + 4A x 3 )(A" + Aix')]

Cosa[(A 2 + 2A3 x + 3A4x 2 + 4Asx 3 )-(A' + 2A3 x)] = O (B12)
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in (B12) let:

P =A 2 + 2A3x + 3A4x 2 +4Ax 3

Q =A + 2A'x'

2 3 c

therefore, the normal constraint equation (B12) becomes:

Sina[l + PQ] - Cosa[P-QI = 0 (B13)

in (B13) let:

p = Pk +6

Q=Qk + Q
k=L a +

a

Then

Sin(ak + 6)[l + (P + 6p)(Q + 6 )]Cos(ak + 6a)Pk +6p Qk
6-- =0
6p-Q 6 Q1

or

(Sinak + 6a C osa k)[1 + p kQk + pk 6 Q + Qk p . (Cosa k

6a Sinak)[pk Qk+ 6p - 6 = 0

or

Sk k k 6 Qk k 6
[Sina +P Q Sina + Pk Sina + Sina 6p + Cosa k

+ pkQk Cosa k6 a + [-Cosakpk + k Sinak6a + Qk Cosa k

SQk Sina k6  - Cosak P + Cosak6QI = 0
1-
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or

[P k Sina k + Cosa k ]6 Q + [Qk Sinak Cosak p

+ [Cosa k + pkQk Cosak + p k Sinak _ Qk Sinak]d

+ [Sinak + pkQk Sinak _ pk Cosak + Qk Cosak] = 0

finally:

[p k Sina k + Cosak] Q + [Qk Sinak _ Cosak]6

+ [Cosak (1 - pkQk) + Sinak (P k Q k)6

= [Sinak (1 + pkQk) Cosak (pk Q k A (B14)

For

P= +2 3P A 2 + 2A3x c + 3A4xc + 4Ax (BIS)

in (B15) let:

,p = pkl + 6

=x k +6

C C

Then

A2  kA(x k6 + k 2 k 3
p p = A2 + kA( c + 6x 3A4(xc + + 4A5 (xc + 6 xc

or

6p 2 + 6A x k + 1Ax Ak+3 k2
2A3  4 2A5  x > A2 + 2A3x + 3Ax

0 4k
+ 4Asx c  _ pk (B16)

Similarly for:

Q=A' + 2Ajx'
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Let

Q,= Qk + Q SQ

!k

Then we have

6Q - 2Aj 6x , = A' + 2Aj x
1 k Q k (B17)

COMPONENTS OF UNIT NORMALS

Equation (27) may be written as:

1 [1 + p2 1/2 [ P +

or:

n-( (B18)nix ,

nY (B19)

in (B18) let.

n nk + 6lx lx n x

p = pk + 6p

then:

(pk + (P + 6'P)

nix + n = 1x (Pk + 2pk 6 p
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or1k
or (Pk + 6p)

nlx nix

1+I1+

using the approximation

1 xS---

2+x2

then

pk + p) kp

nix +6n ix ( 1 + pk2)

1 + k2

Y(pk + p p 6p + 6 p +P k 6P)

(2
(i+ P k) 3/2

-Y Sp k

(1 + pk 2 3/2 (1 + P k 2 1 /2

finally

+ 2 2 ]S k nl (B20)
lx (1 + pk2) 3 / 2  P (1 + )1/2 nx

similarly in equation (B19) let

k
nly n ly + 6nly

p,.I pk + 6
P

then

n + = 
ly n1  1 ( k + 6P, 2
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or

n __ 
ly n1 ly ~ 2 k

2 6

+ k
1+1 + pk 2

and finally

+ k k2+ 3 1 " - n (B21)nlyk 3/2k
(1 +P ;i +Pk

Equation (29) may be written as:

n _ [-Qi' + j']

or

n2 x -BQz 11 (B22)
[1 + Q

!B
n (B23)n2y' [i+Q'I/2

1+ Q I

in equation (B22) let

k +, n2x, = n2x, + n~
'12xl

Q=Qk+ Q

then

k -O(Qk + 6)
n~'+ n = __ __ __ __ __

.2x' 1+ (Q + 6)2
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or k

k -O(Q + 6Q)
+~ 6r k 

_ _ _ _ _ _ _ _ _ _2 k2  
2 Qk
1 Qk2

( Qk+ k

!(Qk + Qk3  Q + 6Q + Qk2

-B(Q + - Q 6 6 +)

(1 + Qk2) 3/2

-_ Q _k (1 + Q k2  0 0

(1 + Qk2 ) 3/2 (1 + Qk2 )3/2

and finally

6 -+Q k  k (B24)
[n2x' (1 + 312 (1 + Qk )1/2

Similarly, in equation (B23) let

ny = nky, + 6

2y' n2y n2y,

Q = Qk +

then

k +6 _
n2y n [i + (Qk + 6Q) ]177

- B

+Tr, k
1 Qk 2Q61 + Qk
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0

or

nk +Q k Q
2y 2 1  Q

k=8B(1 + Q ) - BQ

+ Qk )3/2

and finally

+ [ k ]6n k k

n2 y' (I + Qk2) 3/ 2  ( + Qk2) 1 /
- n23' (B25)

(1 + Q )/

LIGAMENT ATTACHEMENT COORDINATES

From equation (8), the ligaments insertion coordinates are:

x. x + x! Cosa - y! Sina (B26)

yj y + x! Sina + y! Cosca (B27)

in equation (B26) let

x kj= j+ 6xj

x = Xk + 6

k+
a

then

( + 6(x - + 6 + X! Cos(a k + - y! Sin(a k  6

k + 6 ) + X!(Cosak - Sinak)(xo 0 Xo xa

+ y!(Sinak + dCosa k)
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or

6 - 6 + (x! Sinak + y! Cosak

- xk + x k + X! Cosa k - y' Sinak (j=1,. ,4) (B28)
j 0 3

similarly, in equation (B27) let:

yj= y + 6
3 yj

o= Yk + 6
0 Yo

kaI a +

which, after simplification, results:

yj (x! Cosa k _ y! Sina k)6

kJ k~a k~ .,)kB9
Yj + Yo+ x! Sinak + y! (j1,.94) (B29)

ARTICULATING CONSTRAINT SURFACES

From equations (85) and (86)

Yc = A1 + A2xc + A3xc
2 + A4Xc 3 + Asc4 (B30)

in equation (B30) let:

x k

Yc =x c + x
Yc

then
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yk +~ A A k~ + IA:(x 6 2 A 3xck + = + 2k + 6 A2 + 4(x c  c

: k )4+ As (x c  a X

or

yk +6 =A + A xk + A6 + A k 2+2x k 6 A k 3
c y 1 2 + A2 6x + A31 2 2 2 + A4 (xc)

+ 3A (xk2 + A (xk)4 + 4A (x) 36
4c x 5 c 5 C XC C

or

r~ + k k k2 k k3A6 Yc [A 2  2A3xk + 3A 4 (x c ) + 4AS(x c ) 3 ] Sx c  A1

+ A2 x + k2 + A k3 + ASk 4 k (B31)
2 A3(x) A4 (xc ()

Similarly, from equations (85) and (87)

' = A' + Ax c + Ajx'2  (B32)

in equation (B32) let:

: y = y k + 6,

:i which, after simplification, results:

6Yc - (A + 2A~x~k)6xc = Ai + A~xck+Ax _ yk (B33)

CC

4k'-!'
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APPENDIX C

COMPUTER PROGRAM, JNTMDL

The following pages contain a listing of the computer

program, JNTMDL, which follows the numerical procedures dis-

cussed in this report. JNTMDL was developed for the two-dimensional

dynamic model of the knee joint and produced the results

presented in its discussion.

C
C oe...e.***o*eee#*e*Oe e**o.4e.e.*.*o.oe .*ee *e**4

C
PROGRAM JNTMDL

C
C PURPOSE:
C Dwrnmic analysis of a two-body-segmented model of the knee
C Joint, in two dimensions, in response to various dynamic
C loading functions.
C
C USAGE:
C Forcing function amplitude and pulse duration must be specified.
C Time increment, delta TP may also be varied.
C Initial contact Points between the tibia and femur must
C be specified.
C
C DESCRIPTION:
C See DYNAMIC SIMULATION OF THE ARTICULATING JOINTS
C
C REMARKS:
C None.
C
C SUBROUTINES AND FUNCTION SUBPROGRANS REQUIRED:
C SINO - solve a set of simultaneous linear eauations
C Various standard FORTRAN library functions.
C
C METHOD:
C Newton-Raphson iteration using Newmark differential
C approximations,

-153-



C
C AUTHOR:#
C Mannsour H. Moeinzadeh
C
C DATE:
C October 1980
C
C .... **#* ***4***** * ..... ,

C
IMPLICIT REAL*B(A-Z)
INTEGER IpJvKpNUMvITMAXpITqKS
DIMENSION AK(22t22)rD(22)pDELTA(22)
KS=O

C
C TIME INCREMENT (SEC)
C

T=O, ODO
DELT=O.OOO1DO

C
C PULSE DURATION (SEC) AND AMPLITUDE (N)
C

TPULSE=09,050D0
AMP=20 .ODO
P1=3, 1415P27D0
FEXTY=O#ODO
FEXTX=O.ODO
SA'JE=O ODO
ALFSAV=300#* Db

C
C MAXIMUM SPECIFIED ITERATION NUMBER
C

I TMAX= 100
C
C COORDINATES OF LIGAMENT INSERTIONS (M)

C XP1=0,8D-2

YP1=16.3D-2
XP2=2.SD-2
YP2=17#SD-2
XP3=2 *50D-2
YP3=20,BD-2
XP4=-0.5D-2
YP4=21 .30D-2

C
C COORDINATES OF LIGAMENT ORIGINS CM
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XS=-2.3D-2
Y5=i .4D-2
X6=-2.a Zi-2
Y6=1 .90D-2
X?=-3.20D-2
.(7;2 .4L-2
8: -2L.3D-2

Y8:1 ,9D-2
C
c LIGAMENT SPRING CONSTANTS (N/M**2)

KI=15.0116
K2=15.OD6

0=~35.06

C

SEGIIAS=3, 1479D0
MOM INR=4.93719D-2

c
C SURFACE EQUAT IONS COEFFICIENTS
C

Al=4.,01401B0D-2
BI=-O .24762106D0
C 1=-O .068891856D2
Dl=-0.02704456D4
E1=-0. 0085B99421D6
A2=21 .337303D-2

B=0045605137D0
C2=0.0109734459D2

C
C INITIAL CONTACT POINT
C

XC=-0. 04200
XPC=0#0250D0
YC=Al +BI*XC+C1*XC**2+D1$XC**3+E1SXC**4
YPC=A2+92*XPC+C2$XPC**2
P=Bl+2*CI*XC+3*D1*XC8S2t4*E1*XCS*3
G=B2+2*C2*XPC
PPRIM=2*C1+6*I*XC+ 128E1*XCS*2
QPRIM=2*C2
GAMA=PPRIM/DABS( PPRIM)
BETA=OPRItI/DABS (OPR IM)
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NIX-AA*P/DSORT ( +P*P)
N1Y=OAMA/DSORT( 1+P*P)
N2XP=-BETA*0/DSQRT( 1+0*0)
N2YP=BETA/DSORT( 1+0*0)

C
C INITIAL FLEXION AN4GLE
c

ALFA=DATAN((P-O)/(1+P*G))
ALFA=ALFA+PI
SN=ISI N(ALFA)
ClN-:rCS(ALFA)

C TIBIAL CENTER OF MIASS

XO=XC-XPC*CN+YPC*SN
Yf,-tC-XPC*SN-YPC*CN
FN=0(.ODO

c COEF=ICIENT OF FRICTION

IIEU=O.ODO
C
C INITIAL LINEAR AND ANGULAR VELOCITY AND ACCELERATION OF
C TIBIAL CENTER OF MASS

Xoi.1=xo
XODM1=O.ODO

YODDMI1=O#ODO
C

ALFM1=ALFA
ALFDM1=0*ODO
ALFDD1=O,ODO

c
X1=XO+XPI*CN-YPI*SN
X2=XO+XP2*CN-YP2*SN
X3:XO+XP3*CN-YP3*SN
X4=XO+XP4*CN-YP4*SN

C
YI=YO+XPL*SNIYP1 SCN
Y2=YO+XP2*SN+YP2*CN
Y3=YO+XP3*SN+YP3*CN
Y4=YO+XP4*SN+YP4*CN
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C
101 CONTINUE

PPRIti=2*C1 *6*D1*XC+12*E1*XC*82
QFPRIII=2*C2
GAMA.ZPPRIN/DABS( PPRIM)
BETA=QPRIN/DABS( OPRIII)

c
INITIAL LENGTHS OF LIGAKINTS

c
Ll=DSORT( (XS-X1 )**2+(Y5-Y1 )**2)
L2=DSORT ((X6-X2 )**2+ (Y6-Y2 ) *2)
L3=DSGRT ((X7-X3)**2+(Y7-Y3)*S2)
L44DSGRT( (X8-X4 )**2+(YB-Y4)**2)

c
IF(T.EO.O.O)LlI=Ll
IFCT,EQO..)L21=L2
II (T.EG.O.0)L3I=L3
IF(T.EQ#O.O)L41=L4

c
C LIGAMENT FORCES

IF(LI.GT.LlI) ADSFI=K1*(LI-L1I)**2
IF(L2.GTL21) ABSF2=K2*(L2-L2I)**2
IF(L3.6TsL3I) ABSF3=K3*(L3-L31)**2
IF(LA.GToL41) ARSF4=K4*(L4-L41)**2

C
IFkLl*LE.L1I) ADSFI1-ADSF1
IF(L2,LE.L21) ABSF2=-ADSF2
IF(L3,LE.L31) ADSF3=-ABSF3
IF(L4,LE.L41) ADSF4=-ADSF4

C

F1X=ABSFI*(X5-X1 )/LI
F2X=ABSF2*( X6-X2)/L2
F3X=ABSF3* (X7-X3 )/L3
F4X=ABSF4* (X8-X4 )/14

F2Y=ABSF2* (Y6-Y2)/12
F 3Y ABSF3*(Y7-Y3)/L3
F4Y=ADSF4* ( Y-Y4)/14

C
ALFDEG=ALFA*1SO *0/PI
IF(T.LT.0.05)6O TO 8
IF(ALFSAV *LT, ALFDEG) SOTO 999

8 CONTINUE
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ALFSAV=ALFDEG

c MOMIENT ARM
c

hQMiARh=O .ODO

C TOTAL EXTERN4AL ENERGY (N-H)
L

EXTENR=DABS(XO-TEMiPXO)*FEXTX+DABS( YO-TEMPYO)*FEXTY+
$ (FEXTX*NOIIARM) *DABS (TEMALF-ALFA)

TOTEXT=EXTENR+SAVE

SAVE=TOTEXT
TEMPXO=XO
TEMPYO=YO
TE1IALF=ALFA

c
4C TOTAL INTERNAL ENERGY

c
PIJTEN1=(K*(L1-LII )**3)/3
POTEN2=(K2*(L2-L21 )**3)/3
POTEN3= (K3*(L3-L31 )**3)/3
POTEN4=(K4*(L4-L41 )*$3)/3

C FL-ELIPT~=#D
IF(L1 .LE.L2I )POTEN2=0.ODO

IF(L3.LE.L3D POTEN3=0#ODO
IF(L4LE.L4)POTEN4=0#ODO

POTENR=POTEN 1+POTEN2+POTEN3+POTEN4
KINENR=(MOMINR*ALFDN1**2)/2+SEGMAS*(XODNI*$2+YODMISs2)/2

C
TOT INT=POTENR+KINENR

C
YC=Al+Bl$XC+C1SXCS*2+D1SXC$*3+El$XC**4
YPC= A24D2*XPC4C2*XPC**2

IF(T.GT.O.O) GO TO 102
WRITE(6r15)

15 FOR1IATU ' 3PTtX'LAt5PAF*'T8'O'T8'OpX'
$,9X, 'Y:O' Th9,'XC' ,T78, 'XPC' ,TS'FN' ,T95, 'MC.LIG' ,T103, 'LC.LIG',

4 $Tl11,'ACLIG',T119,'PC.LIG',T128,'IER,*',2X,'EXT-ENR',2X,'INT-ENR
$ ,6X, 'YC' ,7X, 'YPC'PF/)

102 IRITE(6916)TALFDEGALFDDIXOY0,XODDHIYODDtI1,XCXPCFNADSF1,
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SABSF2iABSF3,ABSF4, ITTOTEXTTOTINTYCYPC
16 FORMAT(' ',F7.5,TlOF6,2,T16,F8.1,T26,F7,4,T36,F7.4,T45,FB.2,T56,

$F8.2,T66,F8.5,T76,F7.5,T85vF8.2,T94,F7.2iT1O2pF7.2,TllOF7.2pT118
$PF7.2,Tl28,I4,3XF7.4t2XF7.4p3XF8.5,3XF8.5)

TZERO=TPULSE
cT
c AP'PLIED DYNAMIC FUNCTION
C

FULSE=AMP*EXF(-4.73*(T/TZERO)**2)*DSIN(PI*T/TZERO)

FEXTX=FULSE*ICOS (ALFA-PI)
FEXTY=PULSE*DSIN(ALFA-PI)

C
IF(T.GE.DELT. AND.T.LE.TPULSE)FEXTX=FEXTX
IF( T.GE .DELT.AN['.T.LE.TPULSE)F XTY=FEXTY
&F;(T.GTTF'ULSE)FEXTX=O.ODO
IF(T.GT.TPULSE)FEXTY=.0.DO

C
T=T+EIEL T

C
C NEWTON-RAPHSON ITERATION PROCESS

1 CONTINUE
I T:: IT +l.
IF(IT.t;T.ITMAX)LdRITE(6v39)

39 ruFPMAI(' 'r12r'NUMBER OF ITERATIONS EXCEEDED THE SPECIFIED
$ ITERATION NUMBER : EXECUTION ABORTED.,.. o..')
IF(IT.GT,ITMAX)GO TO 999

SN=DSIN(ALFA)
CN=DCOS (ALFA)

C
C INITIALIZATION OF CAKJ AND EDJ MATRICES

DO 5 I1122
D(I)=O.O
DO 5 J=1,22
AK(IrJ)=OO

5 CONTINUE

C COMPONENTS OF ED3 MATRIX
C

['(1 =-X1+XO+XP1*CN-YPISSN
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1'(2) =-X2+X0+XP'&*CN-Y'2*SN
li( 3)=-X3+X0+XP3*CN-YP3$SN
11(4) =-X4+XO+XP4*CN-YP4*SN

lik5)=-YI+YO+XF1*SN+YPI*CN
11(6) =-Y2+YO+XFP2'SN+YP&'gCN
(I(7)::.-"3+ 0+XF3*SH+YP3*CN
El 8) C Y4+YO +XP4*SN+YP4*CN

c
11(9)= SEGtiAE*( (4.0/DELT**2)*(XO-XOMI)-(4./DELT)X3DMI-XODDM1)

El0)zSE&KAS*((4.O/DELT**2 *(YO-YOl)-(4.O/DELT)*YODM1-YODDM1)
$-'Fl1Y+F2Y+F3Y+F4Y)-FN*(tjEU*NIX+NIY)*GMA-FEXTY

E(I)-( (Xl-XO)*F1Y+(X2-XO)*F2Y+(X3-XO)*F3Y+(X4-XO)*F4Y-(Y1-YO)*
$FIX-(Y2 -YO)*F2X-(Y3-YO)*F3X-(Y4-YO)*F4X)-FN*GMA*( (XC-XO)*(NlY*
$MEU*N1X)-(YC-YO)*(NX-MEU*NIY))+iOMINR*( (4.O/DELT**2)*(ALFA-ALFM1
$)-(4.0/DELT)*ALFDII-ALFDD1 )+FEXTX*MOMARM
0(12-) =XO-XC+XF'C*CN-YPC*SN
D( 13)=YO-YC+XFC*SN+YPC*KCN
I15-Al+B1*XC+C1*XC**2+Dl*XC*s3+El*XC*s4-YC
'( 16)=A2+B2 *XFPC+C2L*XPC**2-YFC
['C 17) -BI+2'*C1*XC+3*1'1*XC**2+4*El*XC**3-P

EI( 1?):I1,0/DE(QRT( I+P**2) )*GAMA-NIY

1(,20) =B2+2*.C2*XFC-G
['(2,1) ('-a/ECRT (1 +Q**2) ) *EETA-N2XP

C 2Z2) = C .*0/DiSQRT (1 +**2) ) *ETA-N2YP

c Clh:ONEIJTS OF [AK) MATRIX

Ah I 3 =X"1.*SN+YP1*CN

AK 2p, :---1 0110
At\'(l23)=XF'2*SN+YP2*CN

Th&1 (,3,=XFP3*SN+YP3*CN
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t Atix 4,3J) XP4*SN+YP4*CN

K -18,):- I.ODO

AK (8f3) =-(XP4*CN-YP4*SN)

AK(6v12)=1 .ODO
AK (7pl 3) =1. 011
AK (8, 14) 1 .ODO

c
AK(9 P4)=-(IIEU*NIY-NIX)*AIA
Als(9 , 16)=-MEU*FN*GAIA
AK(9 Y15)=FN*6AMA
AK (9 Plii -4 .0*SEGMAS/DELT**2

C
AK( 1094)=(IIEU*N1X+N1Y)*GANA
AK( 10,1b)=FN*GAMA
AKC(10,15)=MEU*FN*GAMA
AK( 10,2)=-4 .0*SEGIIAS/DELT**2

C

AK(11Y8)=F2Y
AK(11,9)=F3Y
AK ( 11, 1) F4Y
AK(11tl)=-((FIY+F2Y+F3Y+F4Y)+FN*(NIYHIEUSNIX)$GAMA)
AK C 11,1) =-FIX
AK (11, 2) =-F2X
AK(l11, 3)=-F3X
AK (11, 14) =-F4X
AK( 11, 2)=( (FIX+F2X+F3X+F4X)*FN*(NX-IEU*NIY)$GIAA)
AK(l11 4)=(XC-XO)*(tNlY+MEU*N1X)-(YC-YO)*(NlX-MEU*N1Y)
AK(11,15)=(MEU*FN*(XC-XO)-FN*(YC-YO) )$GAIIA
AK(11,16)=(FN*(XC-XO)+lEU*FN*(YC-YO) )*GAMA
AK( 11 ,5)=FN*(NlY+?iEU*NIX)SGMA
AK( 11, 19)=-FN*(NIX-MEU*NIY)*GAMA
AK( 11 3)=-4.0*MOMINR/DELT**2

C



AK(125)1 *ODO
AK(12p1)z-1 ODO
AK (12t3) =XPC*SN+YPCSCN
AK(12t6)=-CM
AK(l2p20)=SN

AK (13, 2)=-1. ODO
AK (13,3) =YPC*SN-XPCSCN
AK (13,19)= 1. ODO

AK(13t2D)=-CN

AK( 14t22)=P*SN+CN
AK( 14t21)=Q*SH-CN
AN( 1493)=C4*( 1+P*G)+SN*(P-Q)

C
AK(15P19)1.#ODO
AK(15p5)=-P

4 c
AK (16t20) =1 * DO
AK(16p6)=-Q

AK( 17p21)=1.ODO
AK~ 17,5)=-(2*CI6*D1*XC*12SE1*XCS*2)

AK(18,15)1 .ODO
AK( 18t21)=GAN/(1+P*P)**1.5

AK(19t16)=1.ODO
AK(19#21)=GANA*/(1+P*P)*Sl195

C
AK(20p22)=l*ODO
AKC20t6)=-2*C2

C
AKC21,17)1.#ODO

AK(21,22)aDETA/(1+9*G)*S* 5

AK(22r1B)=.o0DO
AK(22t22)=DETA*G/(14O*Q)S*1 .5

C
C CALCULATION OF COMPONENTS OF DELTA MATRIX

CALL SIMQ(AKpDv22tKS)
C

DO 44 I=l,22
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DELTA(I)=D(I)
44 CONTINUE

C
IF(KS.EQ*1) URITE(6v3)

3 FORMAT(' ','KS=1 PSINGULAR MATRIX *#EXECUTION ABORTED .... )

IF(KSsEG.1) GO TO 999

C NEW VALUES
C

X0=X0+DELTA( )
YO=YO+DELTA( 2)
ALFA=ALFA+ DELTA (3)
FN=FN+ DELTA (4)
XC=XC+DELTA (5)
XPC=XPC+ DELTA (6)
Xl =XI+DELTA( 7)
X2=X2+DELTA(B)
X3=X3+DELTA(9)
X4=X4+DELTAQ 0)
Y1=Y1+DELTA(I1)
Y2.:Y2+DELTA( 12)
3Y3+U0ELTA(13)
Y4=Y4+DELTA( 14)
N1X=NlX+DELTA( 15)
N1Y=N1Y+DELTA( 16)
N2XP. N2XPtDELTA(17)
fl2YP=N2YP+DELTA( 1)
rC=YCIDELTA(19)
YPC=YPC+DELTA( 20)
P=P+DELTA( 21)
G=Q+DELTA (22)

C
C CONVERGENCE TESTS
C

OMEG=0. OG0lDO
C

DO 555 1=1,22
IF(DADS(DELTA(I)).GToOMEG) 6O TO 1

555 CONTINUE
C
c. NEWJMARK( DIFFERENTIAL APPROXIMATIONS
C
C CALCULATION OF VELOCITIES AND ACCELERATIONS AT TIME T
C

XODDT=(4#0/ELT**2)*(XO-XOI)-(4.0/DELT)SXODM1-XODDN1
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XODT=XODMIl+(tELT/20)*XODDMI+(DELT/2.0)*XODDT

XODM1 =XODT
XOIIDMI4XODDT

YOIIDT=(4 .0/DELT**2)*(YO-YOI)-(4.O/DELT)$YODI-YODDM1
YODT=YODI1 1(DELT/2 .0) *YODDI+ ( DELT/2 .0) *YODDT

YODM1 =Y0DT
YOIIDM1 =YODtT

ALFDDT=(4.0/DELT**2)*(ALFA-ALFMt1)-(4.0/DELT)*ALFDMI1-ALFDDI
ALFDT=ALFDI1+(DELT/2.0)*ALFDD1+(DELT/2.O)*ALFDDT

C
ALFMI=ALFA
ALFDMI=ALFDT
ALlI-'D1ALFDDT

Ull~ TO 101

999 STOP
EN4D

-164-



SUBROUTINE SIMQ(A,B,N,KS)
C

C
C PURPOSE:
C OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONSY
C AX=B
C

C USAGE:
C CALL SIMQ(AvBpNvKS)
C
C DESCRIPTION OF PARAMETERS:
C A - MATRIX OF COEFFICIENTS STORED COLUMNWISE, THESE ARE
C DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS
C N BY N.
C B - VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE
C REPLACED BY FINAL SOLUTION VALUESP VECTOR Xo

C N - NUMBER OF EQUATIONS AND VARIABLES. N MUST BE *GT. ONE.
C KS - OUTPUT DIGIT
C 0 FOR A NORMAL SOLUTION
C 1 FOR A SINGULAR SET OF EQUATIONS
C
C: REMARKS:

C MATRIX A MUST BE GENERAL.
C IF MATRIX IS SINGULAR, SOLUTION VALUES ARE MEANINGLESS.
C AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX
C INVERSION (MINV) AND MATRIX PRODUCT (GMPRD).
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED:
C NONE

C METHOD:
C METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL
C DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGING
C ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL
C ELEMENTS.
C THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN
C N STAGES, THE BACK SOLUTION FOR THE OTHER VARIABLES IS
C CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION
C VALUES ARE DEVELOPED IN VECTOR By WITH VARIABLE 1 IN B(1)p
C VARIABLE 2 IN B(2),.,....... VARIABLE N IN B(N).
C IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0,
C THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS
C TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT.
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cI
C
C

IMPLICIT DOUBLE PRECISION (A-HtO-Z)

DIMENSION A(1)PB(1)
C
C FORWARD SOLUTION
C

TOL=0.0
KS=O
JJ=-N

DO 65 J=1IN
JY=J+I
JJ=JJ+N+1
DIGA=O
IT=JJ-J
DO 30 I=JN

C
C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN
C

IJ=IT+I
IF(DABS(DIGA)-DABS(A(IJ))) 20v30t30

20 DIGA=A(IJ)
IMAX=I

30 CONTINUE
C
C TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)
C

IF(DABS(DIGA)-TOL) 35935P40
35 KS=1

RETURN
C
C INTERCHANGE ROWS IF NECESSARY
C

40 IlsJ+N*(J-2)
IT=IMAX-J"
DO 50 K=JPN
11=11+N
12=1I+IT
SAVEwA(II)
AIl)=A(12)
A(12)SAVE

C
C DIVIDE EQUATION BY LEADING COEFFICIENT
C
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50 A(II)=A(I1)/BIGA
SAVExD( IMAX)
B(INAX)=D(J)
B(J)=SAVE/BIGA

C ELIMINATE NEXT VARIABLE

IF(J-Nr) 55970P55
55 IQS=N$(J-1)

DO 65 IX=JYPN
IXJ=IQS+IX
IT=J-IX
DO 60 JX=JYPN
I XJX=N*(JX-1 )+IX
JJX=IXJX*IT

60 A(IXJX)=A(IXJX)-(ACIXJ)*A(JJX))
65 3(IX)=B(IX)-(D(J)*A(IXJ))

c
C BACK SOLUTION
C

70 NY=N-1
IT=N*N
DO 0 B J=1,NY
IA=IT-J
IBZ-N-J
I C=N
DO 80 K=1vJ
B( ID)=D(ID)-A(IA)*B(IC)
IA=IA-N

80 IC=IC-1
RETURN
END
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